Как найти мзф тригонометрической функции. Решение типовых задач

Функция - одно из важнейших математических понятий.

Определение: Если каждому числу из некоторого множества x поставлено в соответствие единственное число y, то говорят, что на этом множестве задана функция y(x). При этом x называют независимой переменной или аргументом, а y - зависимой переменной или значением функции или простофункцией.

Говорят также, что переменная y является функцией от переменной x.

Обозначив соответствие некоторой буквой, например f, удобно писать: y=f (x), то есть, значение y получается из аргумента x с помощью соответствия f. (Читают: y равно f от x.) Символом f (x) обозначают значение функции, соответствующее значению аргумента, равному x.

Пример 1 Пусть функция задается формулой y=2x 2 –6. Тогда можно записать, что f(x)=2x 2 –6. Найдем значения функции для значений х, равных, например, 1; 2,5;–3; т. е. найдем f(1), f(2,5), f(–3):

f(1)=2 1 2 –6=–4;
f(2,5)=2 2,5 2 –6=6,5;
f(–3)=2 (–3) 2 –6= 12.

Заметим, что в записи вида y=f (x) вместо f употребляют и другие буквы: g, и т. п.

Определение: Область определения функции - это все значения x, при которых существует функция.

Если функция задана формулой и ее область определения не указана, то считают, что область определения функции состоит из всех значений аргумента, при которых формула имеет смысл.

Другими словами, область определения функции, заданной формулой, является все значения аргумента, за исключением тех, которые приводят к действиям, которые мы не можем выполнить. На данный момент мы знаем только два таких действия. Мы не можем делить на нуль и не можем извлечь квадратный корень из отрицательного числа.

Определение: Все значения, которые принимает зависимая переменная образуют область значения функции.

Область определения функции, описывающей реальный процесс, зависит от конкретных условий его протекания. Например, зависимость длины l железного стержня от температуры нагревания t выражается формулой, где l 0 начальная длина стержня, а -коэффициент линейного расширения. Указанная формула имеет смысл при любых значениях t. Однако, областью определения функцииl=g(t) является промежуток в несколько десятков градусов, для которого справедлив закон линейного расширения.

Пример.

Укажите область значений функции y = arcsinx .

Решение.

Областью определения арксинуса является отрезок [-1; 1] . Найдем наибольшее и наименьшее значение функции на этом отрезке.

Производная положительна для всех x из интервала (-1; 1) , то есть, функция арксинуса возрастает на всей области определения. Следовательно, наименьшее значение она принимает при x = -1 , а наибольшее при x = 1 .

Мы получили область значений функции арксинуса .

Найдите множество значений функции на отрезке .

Решение.

Найдем наибольшее и наименьшее значение функции на данном отрезке.

Определим точки экстремума, принадлежащие отрезку :

Зависимость одной переменной от другой называется функциональной зависимостью. Зависимость переменной y от переменной x называется функцией , если каждому значению x соответствует единственное значение y .

Обозначение:

Переменную x называют независимой переменной или аргументом , а переменную y - зависимой. Говорят, что y является функцией от x . Значение y , соответствующее заданному значению x , называют значением функции .

Все значения, которые принимает x , образуют область определения функции ; все значения, которые принимает y , образуют множество значений функции .

Обозначения:

D(f) - значения аргумента. E(f) - значения функции. Если функция задана формулой, то считают, что область определения состоит из всех значений переменной, при которых эта формула имеет смысл.

Графиком функции называется множество всех точек на координатной плоскости , абсциссы которых равны значениям аргумента, а ординаты - соответствующим значениям функции. Если некоторому значению x=x 0 соответствуют несколько значений (а не одно) y , то такое соответствие не является функцией. Для того чтобы множество точек координатной плоскости являлось графиком некоторой функции, необходимо и достаточно, чтобы любая прямая параллельная оси Оу, пересекалась с графиком не более чем в одной точке.

Способы задания функции

1) Функция может быть задана аналитически в виде формулы. Например,

2) Функция может быть задана таблицей из множества пар (x; y) .

3) Функция может быть задана графически. Пары значений (x; y) изображаются на координатной плоскости.

Монотонность функции

Функция f(x) называется возрастающей на данном числовом промежутке, если большему значению аргумента соответствует большее значение функции. Представьте, что некоторая точка движется по графику слева направо. Тогда точка будет как бы "взбираться" вверх по графику.

Функция f(x) называется убывающей на данном числовом промежутке, если большему значению аргумента соответствует меньшее значение функции. Представьте, что некоторая точка движется по графику слева направо. Тогда точка будет как бы "скатываться" вниз по графику.

Функция, только возрастающая или только убывающая на данном числовом промежутке, называется монотонной на этом промежутке.


Нули функции и промежутки знакопостоянства

Значения х , при которых y=0 , называется нулями функции . Это абсциссы точек пересечения графика функции с осью Ох.

Такие промежутки значений x , на которых значения функции y либо только положительные, либо только отрицательные, называются промежутками знакопостоянства функции.


Четные и нечетные функции

Четная функция
1) Область определения симметрична относительно точки (0; 0), то есть если точка a принадлежит области определения, то точка -a также принадлежит области определения.
2) Для любого значения x f(-x)=f(x)
3) График четной функции симметричен относительно оси Оу.

Нечетная функция обладает следующими свойствами:
1) Область определения симметрична относительно точки (0; 0).
2) для любого значения x , принадлежащего области определения, выполняется равенство f(-x)=-f(x)
3) График нечетной функции симметричен относительно начала координат (0; 0).

Не всякая функция является четной или нечетной. Функции общего вида не являются ни четными, ни нечетными.

Периодические функции

Функция f называется периодической, если существует такое число , что при любом x из области определения выполняется равенство f(x)=f(x-T)=f(x+T) . T - это период функции.

Всякая периодическая функция имеет бесконечное множество периодов. На практике обычно рассматривают наименьший положительный период.

Значения периодической функции через промежуток, равный периоду, повторяются. Это используют при построении графиков.


Функция-это модель. Определим X, как множество значений независимой переменной // независимая -значит любая.

Функция это правило, с помощью которого по каждому значению независимой переменной из множества X можно найти единственное значение зависимой переменной. // т.е. для каждого х есть один у.

Из определения следует, что существует два понятия- независимая переменная (которую обозначаем х и она может принимать любые значения) и зависимая переменная (которую обозначаем y или f(х) и она высчитывается из функции, когда мы подставляем х).

НАПРИМЕР у=5+х

1. Независимая -это х, значит берем любое значение, пусть х=3

2. а теперь вычисляем у, значит у=5+х=5+3=8. (у зависима от х, потому что какой х подставим, такой у и получим)

Говорят, что переменная y функционально зависит от переменной x и обозначается это следующим образом: y = f (x).

НАПРИМЕР.

1.у=1/х. (наз.гипербола)

2. у=х^2. (наз. парабола)

3.у=3х+7. (наз. прямая)

4. у= √ х. (наз. ветвь параболы)

Независимая переменная (кот. мы обозначаем х) имеет название аргумент функции.

Область определения функции

Множество всех значений, которые принимает аргумент функции, называется областью определения функции и обозначается D (f) или D (y).

Рассмотрим D (у) для 1.,2.,3.,4.

1. D (у)= (∞; 0) и (0;+∞) //всё множество действительных чисел, кроме нуля.

2. D (у)= (∞; +∞)//всё мн-во действит.чисел

3. D (у)= (∞; +∞)//всё мн-во действит.чисел

4. D (у)=

E(y ) = (– ∞, + ∞)

E(y ) = (– ∞, + ∞)

E(y ) = (– ∞, + ∞)

E(y ) = (0, + ∞)


  • Можем ли мы, используя эти знания, сразу найти множества значений записанных на доске функций? (см. таблицу 2).

  • Что может помочь в ответе на данный вопрос? (Графики этих функций).

  • Как построить график первой функции? (Опустить параболу на 4 единицы вниз).
Аналогично беседуем по каждой функции из таблицы.

Функция

Множество значений

y = x 2 – 4

E(y ) = [-4, + ∞)

y = + 5

E(y ) =

y = – 5 cos x

E(y ) = [- 5, 5]

y = tg (x + / 6) – 1

E(y ) = (– ∞, + ∞)

y = sin (x + / 3) – 2

E(y ) = [- 3, - 1]

y = | x – 1 | + 3

E(y ) =

y = | ctg x |

E(y ) =

y =
= | cos (x + /4) |

E(y ) =

y = (x – 5) 2 + 3

E(y ) = .
Найдите множество значений функции:


.

Введение алгоритма решения задач на нахождение множества значений тригонометрических функций.

Давайте посмотрим, как мы можем применить имеющийся опыт для решения различных заданий, включаемых в варианты единого экзамена.

1. Нахождение значений функций при заданном значении аргумента.

Пример. Найти значение функции у = 2 cos (π/2+ π/4) – 1, если х = - π/2.

Решение.


y (-π/2) = 2 cos (- π/2 – π/4)- 1= 2 cos (π/2 + π/4)- 1 = - 2 sin π/4 – 1 = - 2
– 1 =

= –
– 1.

2.Нахождение области значений тригонометрических функций


Решение.

1≤ sin х ≤ 1

2 ≤ 2 sin х ≤ 2

9 ≤ 11+2sin х ≤ 13

3 ≤
+2∙ sin х ≤
, т.е. Е (у)= .

Выпишем целые значения функции на промежутке . Это число 3.

Ответ: 3.


  • Найдите множество значений функции у = sin 2 х + 6sin х + 10.

  • Найдите множество значений функции: у = sin 2 х - 6 sin х + 8 . (самостоятельно)
Решение.

у = sin 2 х- 2 3 sin х + 3 2 - 3 2 + 8,

у = (sin х- 3) 2 -1.

Е (sin х ) = [-1;1];

Е (sin х -3) = [-4;-2];

Е (sin х -3) 2 = ;

Е (у ) = .

Ответ: .


  • Найдите наименьшее значение функции у = соs 2 x + 2sin x – 2.
Решение.

Можем ли мы найти множество значений этой функции? (Нет.)

Что нужно сделать? (Свести к одной функции.)

Как это сделать? (Использовать формулу cos 2 x = 1-sin 2 x .)

Итак, у = 1-sin 2 x + 2sin x –2,

y = -sin 2 x + 2sin x –1,

у = -(sin x –1) 2 .

Ну, а теперь мы можем найти множество значений и выбрать из них наименьшее.

1 ≤ sin x ≤ 1,

2 ≤ sin x – 1 ≤ 0,

0 ≤ (sin x – 1) 2 ≤ 4,

4 ≤ -(sin x -1) 2 ≤ 0.

Значит, наименьшее значение функции у наим = –4. Ответ: -4.


  • Найдите произведение наибольшего и наименьшего значений функции
у = sin 2 x + cos x + 1,5.

Решение.

у = 1-cos 2 x + cos x + 1,5,

у = -cos 2 x + 2∙0,5∙cos x - 0,25 + 2,75,

у = -(cos x - 0,5) 2 + 2,75.

Е(cos x ) = [-1;1],

Е(cos x – 0,5) = [-1,5;0,5],

Е(cos x – 0,5) 2 = ,

Е(-(cos x -0,5) 2) = [-2,25;0],

Е(у ) = .

Наибольшее значение функции у наиб = 2,75; наименьшее значение у наим = 0,5. Найдём произведение наибольшего и наименьшего значения функции:

у наиб у наим = 0,5∙2,75 = 1,375.

Ответ: 1,375.



Решение.

Перепишем функцию в виде у =,

у =
,

Найдем теперь множество значений функции.

E(sin x ) = [-1, 1],

E(6sin x ) = [-6, 6],

E(6sin x + 1) = [-5, 7],

E((6sin x + 1) 2) = ,

E(– (6sin x + 1) 2) = [-49, 0],

E(– (6sin x + 1) 2 + 64) = ,

E(y ) = [
, 8].

Найдем сумму целых значений функции: 4 + 5 + 6 + 7 + 8 = 30.

Ответ: 30.



Решение.

1)
то есть х принадлежит I четверти.

2)

Следовательно, 2х принадлежат II четверти.

3) Во II четверти функция синус убывает и непрерывна. Значит, данная функция
принимает все значения от
до

4) Вычислим эти значения:

Ответ:
.




Решение.

1) Так как а синус принимает значения от -1 до 1, то множество значений разности
. При умножении на
этот отрезок перейдет в отрезок
.

2) Арккосинус – монотонно убывающая и непрерывная функция. Значит, множество значений выражения - это отрезок
.

3) При умножении этого отрезка на получим
.

Ответ:
.



Решение.

Так как арктангенс является возрастающей функцией, то
.

2) При возрастании х от
до аргумент 2х возрастает от
до . Так как синус на таком промежутке возрастает, то функция
принимает значения от
до 1.

3) При возрастании от до
аргумент 2х возрастает от до
. Так как синус на таком промежутке убывает, то функция
принимает значения от
до 1.

4) Используя формулу, выражающую синус через тангенс половинного угла, находим, что

.

Значит, искомое множество значений – это объединение отрезков
и
, то есть отрезок
.

Ответ:
.
Данный прием (Введение вспомогательного угла) применяется для нахождения множества значений функций вида

у = a sin x + b cos x или у = a sin (р x) + b cos (р x).


  • Найдите множество значений функции
у = 15 sin 2x + 20 cos 2x.

Решение.

Найдем значение
=
= 25.

Преобразуем выражение

15 sin 2x + 20 cos 2x = 25 (
) = 25 () =

25 sin (2x +), где cos= , sin=.

Множество значений функций у = sin (2x +): -1 sin (2x +) 1.

Тогда множество значений исходной функции -25 25 sin (2x +) 25.

Ответ : [-25; 25].
3. Задания на нахождение наибольшего и наименьшего значения функции на промежутке.


  • Найдите наибольшее и наименьшее значение функции у = сtg х на отрезке [π/4; π/2].
Решение.

Функция у = сtg х является убывающей на отрезке [π/4; π/2], следовательно, наименьшее значение функция будет принимать при х = π/2, то есть у (π/2) = сtg π/2 = 0; а наибольшее значение – при х= π/4, то есть у (π/4) = сtg π/4 = 1.

Ответ: 1, 0.



.
Решение.

Выделим в равенстве
целую часть: .

Отсюда следует, что графиком функции f(x) явля­ется либо гипербола (а≠ 0), либо прямая без точки.

При этом если а; 2а) и (2а;
) и, если а > 0, монотонно возрастает на этих лучах.

Если а = 0, то f(x) = -2 на всей области определе­ния х ≠ 0. Поэтому очевидно, что искомые значения параметра не равняются нулю.

Поскольку нас интересуют значения функции толь­ко на отрезке [-1; 1], то классификация ситуаций определяется тем, что асимптота х = 2а гиперболы (а≠0) располагается относительно этого отрезка.

Случай 1. Все точки промежутка [-1; 1] находят­ся справа от вертикальной асимптоты х = 2а, то есть когда 2а

Случай 2. Вертикальная асимптота пересекает про­межуток [-1; 1], и функция убывает (как и в случае 1), то есть когда

Случай 3. Вертикальная асимптота пересекает про­межуток [-1; 1] и функция возрастает, то есть -1

.

Случай 4. Все точки промежутка [-1; 1] находят­ся слева от вертикальной асимптоты, то есть 1 а > . и второго
Прием 4 . Выражение х через у. (Поиск области определения обратной функции)

Прием 5. Упрощение формулы, задающей дробно-рациональную функцию

Прием 6. Нахождение множества значений квадратичных функций (с помощью нахождения вершины параболы и установления характера поведения её ветвей).

Прием 7. Введение вспомогательного угла для нахождения множества значений некоторых тригонометрических функций.

страница 1

Многие задачи приводят нас к поиску множества значений функции на некотором отрезке или на всей области определения. К таким задачам можно отнести различные оценки выражений, решение неравенств.

В этой статье дадим определение области значений функции, рассмотрим методы ее нахождения и подробно разберем решение примеров от простых к более сложным. Весь материал снабдим графическими иллюстрациями для наглядности. Так что эта статья является развернутым ответом на вопрос как находить область значений функции.


Определение.

Множеством значений функции y = f(x) на интервале X называют множество всех значений функции, которые она принимает при переборе всех .

Определение.

Областью значений функции y = f(x) называется множество всех значений функции, которые она принимает при переборе всех x из области определения .

Область значений функции обозначают как E(f) .

Область значений функции и множество значений функции - это не одно и то же. Эти понятия будем считать эквивалентными, если интервал X при нахождении множества значений функции y = f(x) совпадает с областью определения функции.

Не путайте также область значений функции с переменной x для выражения, находящегося в правой части равенства y=f(x) . Область допустимых значений переменной x для выражения f(x) – это есть область определения функции y=f(x) .

На рисунке приведены несколько примеров.

Графики функций показаны жирными синими линиями, тонкие красные линии – это асимптоты, рыжими точками и линиями на оси Оy изображена область значений соответствующей функции.

Как видите, область значений функции получается, если спроецировать график функции на ось ординат. Она может быть одним единственным числом (первый случай), множеством чисел (второй случай), отрезком (третий случай), интервалом (четвертый случай), открытым лучом (пятый случай), объединением (шестой случай) и т.п.


Так что же нужно делать для нахождения области значений функции.

Начнем с самого простого случая: покажем как определять множество значений непрерывной функции y = f(x) на отрезке .

Известно, что непрерывная на отрезке функция достигает на нем своего наибольшего и наименьшего значений . Таким образом, множеством значений исходной функции на отрезке будет отрезок . Следовательно, наша задача сводится к нахождению наибольшего и наименьшего значения функции на отрезке .

Для примера найдем область значений функции арксинуса.

Пример.

Укажите область значений функции y = arcsinx .

Решение.

Областью определения арксинуса является отрезок [-1; 1] . Найдем наибольшее и наименьшее значение функции на этом отрезке.

Производная положительна для всех x из интервала (-1; 1) , то есть, функция арксинуса возрастает на всей области определения. Следовательно, наименьшее значение она принимает при x = -1 , а наибольшее при x = 1 .

Мы получили область значений функции арксинуса .

Пример.

Найдите множество значений функции на отрезке .

Решение.

Найдем наибольшее и наименьшее значение функции на данном отрезке.

Определим точки экстремума, принадлежащие отрезку :

Вычисляем значения исходной функции на концах отрезка и в точках :

Следовательно, множеством значений функции на отрезке является отрезок .

Сейчас покажем, как находить множество значений непрерывной функции y = f(x) промежутках (a; b) , .

Сначала определяем точки экстремума, экстремумы функции, промежутки возрастания и убывания функции на данном интервале. Далее вычисляем на концах интервала и (или) пределы на бесконечности (то есть, исследуем поведение функции на границах интервала или на бесконечности). Этой информации достаточно, чтобы найти множество значений функции на таких промежутках.

Пример.

Определите множество значений функции на интервале (-2; 2) .

Решение.

Найдем точки экстремума функции, попадающие на промежуток (-2; 2) :

Точка x = 0 является точкой максимума, так как производная меняет знак с плюса на минус при переходе через нее, а график функции от возрастания переходит к убыванию.

есть соответствующий максимум функции.

Выясним поведение функции при x стремящемся к -2 справа и при x стремящемся к 2 слева, то есть, найдем односторонние пределы:

Что мы получили: при изменении аргумента от -2 к нулю значения функции возрастают от минус бесконечности до минус одной четвертой (максимума функции при x = 0 ), при изменении аргумента от нуля к 2 значения функции убывают к минус бесконечности. Таким образом, множество значений функции на интервале (-2; 2) есть .

Пример.

Укажите множество значений функции тангенса y = tgx на интервале .

Решение.

Производная функции тангенса на интервале положительна , что указывает на возрастание функции. Исследуем поведение функции на границах интервала:

Таким образом, при изменении аргумента от к значения функции возрастают от минус бесконечности к плюс бесконечности, то есть, множество значений тангенса на этом интервале есть множество всех действительных чисел .

Пример.

Найдите область значений функции натурального логарифма y = lnx .

Решение.

Функция натурального логарифма определена для положительных значений аргумента . На этом интервале производная положительна , это говорит о возрастании функции на нем. Найдем односторонний предел функции при стремлении аргумента к нулю справа, и предел при x стремящемся к плюс бесконечности:

Мы видим, что при изменении x от нуля к плюс бесконечности значения функции возрастают от минус бесконечности к плюс бесконечности. Следовательно, областью значений функции натурального логарифма является все множество действительных чисел.

Пример.

Решение.

Эта функция определена для всех действительных значений x . Определим точки экстремума, а также промежутки возрастания и убывания функции.

Следовательно, функция убывает при , возрастает при , x = 0 - точка максимума, соответствующий максимум функции.

Посмотрим на поведение функции на бесконечности:

Таким образом, на бесконечности значения функции асимптотически приближаются к нулю.

Мы выяснили, что при изменении аргумента от минус бесконечности к нулю (точке максимума) значения функции возрастают от нуля до девяти (до максимума функции), а при изменении x от нуля до плюс бесконечности значения функции убывают от девяти до нуля.

Посмотрите на схематический рисунок.

Теперь хорошо видно, что область значений функции есть .

Нахождение множества значений функции y = f(x) на промежутках требует аналогичных исследований. Не будем сейчас подробно останавливаться на этих случаях. В примерах ниже они нам еще встретятся.

Пусть область определения функции y = f(x) представляет собой объединение нескольких промежутков. При нахождении области значений такой функции определяются множества значений на каждом промежутке и берется их объединение.

Пример.

Найдите область значений функции .

Решение.

Знаменатель нашей функции не должен обращаться в ноль, то есть, .

Сначала найдем множество значений функции на открытом луче .

Производная функции отрицательна на этом промежутке, то есть, функция убывает на нем.

Получили, что при стремлении аргумента к минус бесконечности значения функции асимптотически приближаются к единице. При изменении x от минус бесконечности до двух значения функции убывают от одного до минус бесконечности, то есть, на рассматриваемом промежутке функция принимает множество значений . Единицу не включаем, так как значения функции не достигают ее, а лишь асимптотически стремятся к ней на минус бесконечности.

Действуем аналогично для открытого луча .

На этом промежутке функция тоже убывает.

Множество значений функции на этом промежутке есть множество .

Таким образом, искомая область значений функции есть объединение множеств и .

Графическая иллюстрация.

Отдельно следует остановиться на периодических функциях. Область значений периодических функций совпадает с множеством значений на промежутке, отвечающем периоду этой функции.

Пример.

Найдите область значений функции синуса y = sinx .

Решение.

Эта функция периодическая с периодом два пи. Возьмем отрезок и определим множество значений на нем.

Отрезку принадлежат две точки экстремума и .

Вычисляем значения функции в этих точках и на границах отрезка, выбираем наименьшее и наибольшее значение:

Следовательно, .

Пример.

Найдите область значения функции .

Решение.

Мы знаем, что областью значений арккосинуса является отрезок от нуля до пи, то есть, или в другой записи . Функция может быть получена из arccosx сдвигом и растяжением вдоль оси абсцисс. Такие преобразования на область значений не влияют, поэтому, . Функция получается из растяжением втрое вдоль оси Оy , то есть, . И последняя стадия преобразований – это сдвиг на четыре единицы вниз вдоль оси ординат. Это нас приводит к двойному неравенству

Таким образом, искомая область значений есть .

Приведем решение еще одного примера, но без пояснений (они не требуются, так как полностью аналогичны).

Пример.

Определите область значений функции .

Решение.

Запишем исходную функцию в виде . Областью значений степенной функции является промежуток . То есть, . Тогда

Следовательно, .

Для полноты картины следует поговорить о нахождении области значений функции, которая не является непрерывной на области определения. В этом случае, область определения разбиваем точками разрыва на промежутки, и находим множества значений на каждом из них. Объединив полученные множества значений, получим область значений исходной функции. Рекомендуем вспомнить 3 слева значения функции стремятся к минус единице, а при стремлении x к 3 справа значения функции стремятся к плюс бесконечности.

Таким образом, область определения функции разбиваем на три промежутка .

На промежутке имеем функцию . Так как , то

Таким образом, множество значений исходной функции на промежутке есть [-6;2] .

На полуинтервале имеем постоянную функцию y = -1 . То есть, множество значений исходной функции на промежутке состоит из единственного элемента .

Функция определена для всех действительных значений аргумента. Выясним промежутки возрастания и убывания функции.

Производная обращается в ноль при x=-1 и x=3 . Отметим эти точки на числовой оси и определим знаки производной на полученных интервалах.

Функция убывает на , возрастает на [-1; 3] , x=-1 точка минимума, x=3 точка максимума.

Вычислим соответствующие минимум и максимум функции:

Проверим поведение функции на бесконечности:

Второй предел вычисляли по .

Сделаем схематичный чертеж.

При изменении аргумента от минус бесконечности до -1 значения функции убывают от плюс бесконечности до -2e , при изменении аргумента от -1 до 3 значения функции возрастают от -2e до , при изменении аргумента от 3 до плюс бесконечности значения функции убывают от до нуля, но нуля не достигают.