Типовая технологическая карта (ттк) электродный прогрев конструкций из монолитного бетона и железобетона. Технологическая карта Технологическая карта на электродный прогрев конструкций из монолитного бетона  Технологическая карта прогрева бетона проводом

При помощи технологической карты прогрева бетона в зимнее время можно сочетать обеспечение эффективности с соблюдением норм безопасности. Этот документ содержит сведения о прогреве бетонных конструкций и технологических решений, которые помогут ускорить работу и уменьшить трудовые затраты, не нанеся ущерб качеству возводимых зимой конструкций.

Область применения

Технологическая карта актуальна при необходимости прогрева малоармированных монолитных конструкций из бетона. Описанные методики наиболее эффективны для таких частей конструкции:

Существует несколько видов прогрева. Чаще всего применяются такие:

  • периферийный;
  • сквозной;
  • арматурный.

Все способы различаются лишь элементами, используемыми как электроды, а их принцип одинаков - при пропускании электричества выделяется тепло, которое разогревает бетон изнутри.

Технологическая карта на электропрогрев бетона содержит необходимые схемы, а также описание всех элементарных операций:

  • набор состава рабочих необходимой квалификации;
  • расчёт трудовых затрат;
  • составление рабочего графика;
  • расчёт материальных затрат на технику и оборудование;
  • подготовка к бетонированию и прогреву;
  • организация зоны работы;
  • установка электрического оборудования и его подключение.

Она также предусматривает нормы техники безопасности и советы по экономии электроэнергии.

Организация работы

Электропрогрев бетона проводом ПНСВ по технологической карте начинается с подготовки. Сначала комплексную трансформаторную подстанцию устанавливают на ровной поверхности, тестируют на холостом ходу, включив устройство в сеть питания. Затем готовят секции шинопроводов и монтируют их у конструкций, обогрев которых необходим. После установленные секции соединяются подходящими кабелями и подключаются к цепи подстанции.

При необходимости с рабочей площадки удаляют наледь, мусор или снег.

Бетонную смесь укладывают в опалубку, открытые поверхности изолируют плёнкой из полиэтилена и минераловатными матами. В указанные на схеме точки вбивают электроды, - стальные стержни диаметром 6 миллиметров и длиной 1 метр - при этом видимые концы должны быть длиннее 10 и короче 20 сантиметров, расстояние же между ними зависит от температуры воздуха и выбранного напряжения. Все это регламентируется таблицами, приведёнными в технологической карте. Электроды соединяют и подключают к шинопроводам.

Перед подачей электричества проверяют несколько важных пунктов:

  • соответствие фактической установки электродов схеме;
  • правильность соединения электродов и их подключения;
  • наличие температурных датчиков;
  • качество контактов;
  • соблюдение правил укладки утеплителя.

Если все в порядке, то на преобразователь подают ток. Если произошло короткое замыкание, дежурный электрик диагностирует и исправляет причину неисправности. Специалист в любом случае обязан ещё раз проверить состояние контактов - это норма безопасности.

Показания температурных датчиков сначала проверяют раз в час, в норме результаты измерений меняются на 6 градусов каждый раз. Когда изотермическая фаза оканчивается, а бетон начинает разогреваться, это делают в два раза реже. На каждой стадии обязательно проверяют не только показания приборов, но и состояние отпаек и соединений.

Если требуется скорректировать скорость прогрева, то для этого меняют напряжение низкой стороны электрического трансформатора. Это же касается и ситуаций, когда температура внешнего воздуха становится отличной от расчётной, что проверяют два раза в день, записывая показания термометра в журнал. С такой же частотой измеряют характеристики электрического тока, - силу и напряжение - осматривают соединения, чтобы исключить искрение.

Тепловую изоляцию, как и опалубку, снимают только после остывания верхних слоёв до 5 градусов, но перед понижением температуры до нуля градусов, иначе они могут примёрзнуть к бетону, что недопустимо. Чтобы избежать трещин , следят за разностью температуры поверхности и воздуха, которая не должна превышать 20−30 градусов. Если добиться таких условий невозможно, бетон защищают толем или брезентом. Скорость остывания должна входить в диапазон от пяти до десяти градусов в час.

На результат сильно влияет соблюдение нескольких простых правил. При укладке основания рабочие не должны допустить того, что бетон замёрзнет из-за контакта с основанием или деформирует его, не приобретя нужную прочность. Нельзя снимать наледь с уже обложенной изоляцией конструкции горячей водой или паром. Заливка бетонной смеси производится равномерно, при этом масса должна охлаждаться медленно и не достигать температуры ниже пяти градусов.

Эта методика представлена как демонстрация примерной последовательности действий и особенностей электропрогрева, не является пособием. Для осуществления прогрева бетона нужно скачать технологическую карту и руководствоваться ей.

Экономия электроэнергии

Для эффективного энергосбережения необходимо выполнить несколько условий. Важно не допустить охлаждение бетонной смеси на стадии транспортировки или укладки более чем на значение, установленное технологическим расчётом. Экономии поспособствует портландцемент (особенно быстротвердеющий). У этой смеси высокая относительная прочность, то есть на прогрев уходит меньше времени. В массу другого вида можно включить химическую добавку, которая уменьшит продолжительность термической обработки благодаря повышению электропроводности или прочности бетона.

Конструкцию следует греть до максимально допустимой температуры, ведь прочность растёт преимущественно в стадии остывания. Некачественная теплоизоляция или её намокание, кабели неподходящей плотности или нарушения контактов - все это приводит к напрасным тратам электроэнергии.


ТИПОВАЯ ТЕХНОЛОГИЧЕСКАЯ КАРТА (ТТК)

ЭЛЕКТРОПРОГРЕВ БЕТОНА

1. ОБЛАСТЬ ПРИМЕНЕНИЯ

Типовая технологическая карта разработана на электропрогрев бетона.

1. Электропрогрев применяется при бетонировании конструкций при температуре наружного воздуха ниже -5 °С, а так же при положительных ("плюсовых") температурах наружного воздуха, когда имеется необходимость резко ускорить процесс бетонирования здания или сооружения. Как правило, целью электропрогрева является получение 50% марочной прочности бетона по окончании электропрогрева.

При отрицательных температурах не прореагировавшая с цементом вода переходит в лед и не вступает в химическое соединение с цементом. В результате этого прекращается реакция гидратации и, следовательно, бетон не твердеет. Одновременно в бетоне развиваются значительные силы внутреннего давления, вызванные увеличением (примерно на 9%) объема воды при переходе ее в лед. При раннем замораживании бетона его неокрепшая структура не может противостоять этим силам и нарушается. При последующем оттаивании замерзшая вода вновь превращается в жидкость и процесс гидратации цемента возобновляется, однако разрушенные структурные связи в бетоне полностью не восстанавливаются.

Замораживание свежеуложенного бетона сопровождается также образованием вокруг арматуры и зерен заполнителя ледяных пленок, которые благодаря притоку воды из менее охлажденных зон бетона увеличиваются в объеме и отжимают цементное тесто от арматуры и заполнителя.

Все эти процессы значительно снижают прочность бетона и его сцепление с арматурой, а также уменьшает его плотность, стойкость и долговечность.

Если бетон до замерзания приобретает определенную начальную прочность, то все упомянутые выше процессы не оказывают на него неблагоприятного воздействия. Минимальную прочность, при которой замораживание для бетона не опасно, называют критической.

Величина нормируемой критической прочности зависит от класса бетона, вида и условий эксплуатации конструкции и составляет: для бетонных и железобетонных конструкций с ненапрягаемой арматурой-50% проектной прочности для В7,5...В10, 40% для В12,5... В25 и 30% для В 30 и выше; для конструкций с предварительно напрягаемой арматурой -80 % проектной прочности; для конструкций, подвергающихся попеременному замораживанию и оттаиванию или расположенных в зоне сезонного оттаивания вечномерзлых фунтов,-70% проектной прочности; для конструкций, нагружаемых расчетной нагрузкой,-100% проектной прочности.

Продолжительность твердения бетона и его конечные свойства в значительной степени зависят от температурных условий, в которых выдерживают бетон. По мере повышения температуры увеличивается активность воды, содержащейся в бетонной смеси, ускоряется процесс ее взаимодействия с минералами цементного клинкера, интенсифицируются процессы формирования коагуляционной и кристаллической структуры бетона. При снижении температуры, наоборот, все эти процессы затормаживаются и твердение бетона замедляется (рис.1).

Поэтому при бетонировании в зимних условиях необходимо создать и поддерживать такие температурно-влажностные условия, при которых бетон твердеет до приобретения или критической, или заданной прочности в минимальные сроки с наименьшими трудовыми затратами. Для этого применяют специальные способы приготовления, подачи, укладки и выдерживания бетона.

При приготовлении бетонной смеси в зимних условиях ее температуру повышают до 35... 40 °С путем подогрева заполнителей и воды. Заполнители подогревают до 60°С паровыми регистрами, во вращающихся барабанах, в установках с продувкой дымовых газов через слой заполнителя, горячей водой. Воду подогревают в бойлерах или водогрейных котлах до 90 °С. Подогрев цемента запрещается.

При приготовлении подогретой бетонной смеси применяют иной порядок загрузки составляющих в бетоносмеситель. В летних условиях в барабан смесителя, предварительно заполненного водой, все сухие компоненты загружают одновременно. Зимой во избежание "заваривания" цемента в барабан смесителя вначале заливают воду и загружают крупный заполнитель, а затем после нескольких оборотов барабана - песок и цемент. Общую продолжительность перемешивания в зимних условиях увеличивают в 1,2... 1,5 раза. Бетонную смесь транспортируют в закрытой утепленной и прогретой перед началом работы таре (бадьи, кузова машин). Автомашины имеют двойное днище, в полость которого поступают отработанные газы мотора, что предотвращает теплопотери. Бетонную смесь следует транспортировать от места приготовления до места укладки по возможности быстрее и без перегрузок. Места погрузки и выгрузки должны быть защищены от ветра, а средства подачи бетонной смеси в конструкции (хоботы, виброхоботы и др.) утеплены.

Состояние основания, на котором укладывают бетонную смесь, а также способ укладки должны исключать возможность ее замерзания в стыке с основанием и деформации основания при укладке бетона на пучинистые грунты. Для этого основание отогревают до положительных температур и предохраняют от замерзания до приобретения вновь уложенным бетоном требуемой прочности.

Опалубку и арматуру до бетонирования очищают от снега и наледи; арматуру диаметром более 25 мм, а также арматуру из жестких прокатных профилей и крупные металлические закладные детали при температуре ниже -10°С отогревают до положительной температуры.

Бетонирование следует вести непрерывно и высокими темпами, при этом ранее уложенный слой бетона должен быть перекрыт до того, как в нем температура будет ниже предусмотренной.

Строительное производство располагает обширным арсеналом эффективных и экономичных методов выдерживания бетона в зимних условиях, позволяющих обеспечить высокое качество конструкций. Эти методы можно разделить на три группы: метод, предусматривающий использование начального теплосодержания, внесенного в бетонную смесь при ее приготовлении или перед укладкой в конструкцию, и тепловыделение цемента, сопровождающее твердение бетона,- так называемый метод "термоса"; методы, основанные на искусственном прогреве бетона, уложенного в конструкцию,- электропрогрев, контактный, индукционный и инфракрасный нагрев, конвективный обогрев; методы, использующие эффект понижения эвтектической точки воды в бетоне с помощью специальных противоморозных химических добавок.

Указанные методы можно комбинировать. Выбор того или иного метода зависит от вида и массивности конструкции, вида, состава и требуемой прочности бетона, метеорологических условий производства работ, энергетической оснащенности строительной площадки и т.д.

2. Выбор способа электропрогрева бетона зависит от характера и массивности конструкций, определяемой модулем поверхности МП, равным отношению охлаждаемой поверхности конструкции в мк ее объему в м, а так же от сроков работ, вида цемента и утеплителей. Для электропрогрева монолитных конструкций с модулем поверхности выше 6 целесообразно применять электродный метод прогрева.

3. В целях экономии электроэнергии следует проводить электропрогрев в наиболее короткие сроки на максимально-допустимой для данной конструкции температуре и выдерживать бетон под током только до приобретения им 50%проектной прочности.

4. При электродном способе электропрогрева обогреваемый бетон включается в электрическую цепь как сопротивление, при помощи электродов из арматурной или сортовой стали, накладываемых внутрь бетона или располагаемых на его поверхности. Так как постоянный ток вызывает электролиз воды, то для электродного прогрева применим только переменный ток.

5. Для электродного метода прогрева применяется поименное напряжении (49-121 В) обеспечивающее более точное соблюдение заданного режим выдерживания бетона.

В качестве источника электроэнергии используется специальные трансформаторы.

Применение повышенного напряжения (до 220 В) допускается при прогреве неармированного бетона и в исключительных случаях при прогреве малоармированных конструкций, содержащих не более 50 кг. арматуры на 1 м бетона.

При выполнении строительных работ в зимних условиях приходится применять искусственный прогрев бетона. Для этих целей широко используется электрическая энергия. Электротермообработка бетона оказывается в ряде случаев более выгодной, чем другие способы прогрева (паром, горячим воздухом и т.п.).

Электротермообработка бетона основана на преобразовании электрической энергии в тепловую непосредственно внутри бетона путем пропускания через него переменного электрического тока с помощью электродов (электродный прогрев) либо в различного рода нагревательных устройствах.

Наиболее эффективным и экономичным способом электротермообработки является электродный прогрев. Применение постоянного тока при этом не допускается, так как он вызывает электролиз воды и других компонентов, содержащихся в бетоне.

При электродном прогреве бетон с помощью стальных электродов включается в цепь переменного тока. Одним из основных исходных параметров при расчете электродного прогрева бетона является его удельное электрическое сопротивление.

Величина удельного электрического сопротивления бетона определяется главным образом количеством воды, концентрацией в ней электролитов и температурой. В течение первых 2-5 часов прогрева бетона его начальное удельное электрическое сопротивлениеснижается до минимального значения, а в дальнейшем повышается.

Величина начального удельного электрического сопротивления бетона колеблется в пределах от 400 до 2500 Ом-см (минимального- от 200 до 1800 Ом-см). При расчете электродного прогрева бетона в качестве исходного параметра принимается расчетное удельное сопротивление

Выдерживание температуры бетона в соответствии с заданным режимом электротермообработки может осуществляться следующими способами:

изменением величины напряжения, подводимого к электродам или электронагревательным устройствам;

отключением электродов пли электронагревателей от сети по окончании подъема температуры;

периодическими включением или отключением напряжения на электродах или электронагревателях.

Перечисленные способы выдерживания заданного режима могутосуществляться как автоматически, так ивручную.

Для электропрогрева бетона используются специальные силовые трансформаторы. В зависимости от требуемой мощности могут применяться как трехфазные, так и однофазные трансформаторы.

Трехфазный трансформатор ТМТ-50 мощностью 50 кВ.А имеет две вторичные обмотки с разным числом витков. При соединении этих обмоток в звезду или треугольник можно соответственно получать напряжения 50,5 пли 87,5В и 64,5 или 106,6 В.

Широко используется трехфазный трансформатор типа ТМОА-50 с алюминиевой обмоткой мощностью 50 кВ.А. В отличие от трансформатора ТМТ-50 регулирование напряжения в нем осуществляется за счет изменения не только схемы соединения вторичной обмотки, но и коэффициента трансформации. При этом вторичное напряжение может изменяться от 49 до 127 В.

Передвижная установка для прогрева бетона помимо трансформатора содержит распределительный щит с коммутационной, защитной и измерительной аппаратурой. Принципиальная электрическая схема такой установки показана на рис.2. Распределительный щит рассчитан на присоединение нескольких отходящих линий к софитам - устройствам, служащим для присоединения электродов.

Очень часто установки для электропрогрева бетона комплектуются из однофазных трансформаторов ТБ-20 мощностью 20 кВ.А. Он имеет первичную обмотку, предназначенную для включения в сеть напряжением 380 или 220 В, и две вторичных обмотки, соединяя которые последовательно или параллельно, можно получить 102 и 51 В.

Для прогрева бетона могут использоваться также сварочные трансформаторы. При этом необходимо учитывать, что сварочные трансформаторы рассчитаны на повторно-кратковременный режим работы. Поэтому в длительном режиме прогрева бетона нагрузка на сварочные трансформаторы не должна превышать 60-70% от номинальной.

6. При модуле поверхности конструкций в пределах 6-15 электропрогрев должен вестись в трехстадийном режиме

1) разогрев;

2)изотермический прогрев;

3) остывание;

В этом случае заданная прочность бетона будет обеспечена к концу стадии остывания. При этом подъем температуры следует производить возможно быстрее, а изотермический прогрев вести при максимально-допустимой для данной конструкции температуре.

7. Подъем температуры бетона конструкций с-модулем поверхности мене и большой протяженностью не должен превышать 5 °С в час, а при модуле свыше 5 - не более 8 °С в час. Для конструкций небольшой протяженностью (6- 8 м) и сильно армированных, а так же для сварного железобетона можно увеличить скорость подъема температуры до 15 °С в час.

Во избежание недопустимо резкого подъема температуры бетона в начале прогревa и для снижения пиковой мощности при прогреве применяют вначале напряжение 50-60 В, увеличивая его по мере твердения бетона.

8. Длительность изотермического прогревa устанавливается строительной лабораторией и зависит от температур наружного воздуха табл.1.

8. Скорость остывания бетона по окончании изотермического прогрева, не должна превышать 3° в час для конструкций с модулем до 3-6 °С; в час - при модуле от 3 до 8; 8° в час - при модуле более 8.

Интенсивность остывания бетона регулируется изменением напряжения, тока или периодическим его включением.

...

ГОССТРОЙ СССР

ЦЕНТРАЛЬНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ
И ПРОЕКТНО-ЭКСПЕРИМЕНТАЛЬНЫЙ ИНСТИТУТ
ОРГАНИЗАЦИИ, МЕХАНИЗАЦИИ И ТЕХНИЧЕСКОЙ ПОМОЩИ СТРОИТЕЛЬСТВУ
(ЦНИИОМТП)

ТЕХНОЛОГИЧЕСКАЯ КАРТА
НА ЭЛЕКТРООБОГРЕВ
НАГРЕВАТЕЛЬНЫМИ ПРОВОДАМИ
МОНОЛИТНЫХ БЕТОННЫХ КОНСТРУКЦИЙ

МОСКВА - 1985

Рекомендовано к изданию решением секции «Технология строительного производства» НТС ЦНИИОМТП Госстроя СССР Технологическая карта на электрообогрев нагревательными проводами монолитных бетонных конструкций. М., 1985. (Госстрой СССР. Центр. науч.-исслед. и проектно-эксперим. ин-т организации, механизации и техн. помощи стр-ву. ЦНИИОМТП). Приведены технологические решения по электрообогреву нагревательными проводами монолитных бетонных и железобетонных сооружений и их частей, возводимых в зимних условиях. Даны рекомендации по выбору основных технологических параметров электрообогрева бетона при отрицательных температурах наружного воздуха, а также схемы раскладки проволочных электронагревателей в монолитных конструкциях. Технологическую карту подготовили сотрудники отдела бетонных работ ЦНИИОМТП Госстроя СССР (Н.С. Мусатова, к.т.н. А.Д. Мягков, к.т.н. В.В. Шишкин) и отдела № 7 Бюро внедрения ЦНИИОМТП (Б.Ю. Губман, Б.А. Ломтев, Г.С. Петрова). Карта предназначена для строительных и проектно-конструкторских организаций.

1 . ОБЛАСТЬ ПРИМЕНЕНИЯ

1.1 . Технологическая карта разработана на электрообогрев нагревательными проводами различных унифицированных монолитных железобетонных конструкций, возводимых в зимних условиях. 1.2 . Даны примеры электрообогрева фундаментов, ростверков, подпорных стенок и других монолитных конструкций при помощи нагревательных проводов. 1.3 . Сущность способа заключается в передаче выделяемого проводами тепла в бетон контактным путем. Провода с металлической токонесущей изолированной жилой, подключаемые в электрическую сеть, работают как нагреватели сопротивления. Нагревательные провода можно закладывать непосредственно в массив монолитной конструкции или использовать в инвентарных гибких плоских электронагревательных устройствах (ГЭП) для внешнего электрообогрева бетона (рис. 1). 1.4 . В состав работ, рассматриваемых картой, входят: подготовка рабочей зоны и конструкции к бетонированию и электрообогреву бетона; укладка нагревательного провода в конструкцию; бетонирование конструкции; электротермообработка бетона; контроль качества бетона.

Рис. 1 . Греющий плоский элемент (ГЭП)

2 . ОРГАНИЗАЦИЯ И ТЕХНОЛОГИЯ СТРОИТЕЛЬНОГО ПРОЦЕССА

2.1 . До начала бетонирования конструкции выполняют следующие подготовительные работы: устанавливают опалубку, арматурные сетки и каркасы; при этом грунтовое основание под конструкцию должно быть отогрето и защищено от промерзания (допускается применение инвентарной опалубки различных конструкций и типов, при эксплуатации в зимних условиях ее утепляют минераловатными матами, пенопластом, пенополиуретаном и т.п., причем коэффициент теплопередачи утеплителя должен быть не более 2 Вт/ м 2 × °С); на ровной площадке не более чем в 25 м от возводимой монолитной конструкции устанавливают трансформаторную подстанцию типа КТП-63-ОБ; на расстоянии до 1,5 м от конструкции устанавливают софиты - инвентарные секции трехфазных шинопроводов (рис. 2);

Рис. 2 . Инвентарная секция шинопроводов (крайняя секция):

1 - разъем; 2 - деревянная стойка; 3 - болты; 4 - токопроводы (полоса 3 ´ 40 мм)

Устанавливают ограждение рабочей зоны и проводят сигнализацию и освещение; около трансформаторной подстанции и распределительных шкафов устанавливают деревянные настилы, покрытые резиновыми ковриками, монтируют противопожарный щит с углекислотными огнетушителями, развешивают в рабочей зоне таблички по технике безопасности; подключают к питающей сети трансформаторную подстанцию и опробывают ее на холостом ходу, а также проверяют работу временного освещения и систем автоматики температурного регулирования; обеспечивают рабочее звено необходимым инструментом, индивидуальными средствами защиты, проводят инструктаж; очищают от мусора, снега и наледи опалубку и арматуру возводимой конструкции. 2.2 . После выполнения подготовительных работ приступают к бетонированию с электротермической обработкой бетона. Работы выполняют в определенной последовательности. Перед бетонированием размещают в конструкции нагревательные провода: в железобетонных конструкциях провод навивают на арматурные каркасы и сетки, в бетонных - на шаблоны, укладываемые по мере бетонирования, причем длину проволочных нагревателей в зависимости от рабочего напряжения принимают по номограмме (рис. 3).

Рис. 3 . Номограмма для определения длины проволочных нагревателей

Нагревательный провод навивают в конструкции без сильного натяжения (с усилием до 30 - 50 Н). В углах с режущими кромками под проводом устанавливают дополнительную изоляцию из рубероида или битуминизированной бумаги. Крепят провода к арматуре вязальной проволокой, причем во избежание обгорания изоляции, замыкания на массу в густоармированных конструкциях и перегорания концов нагревательного провода из бетона наружу устраивают выводы из монтажного провода сечением 2 ,5 - 4 мм (рис. 4). Выводы располагают с одной стороны конструкции, а узлы соединений тщательно изолируют. Опалубку монтируют частично не установленную, чтобы иметь возможность уложить нагревательные провода в конструкцию. Нагревательные провода подключают к инвентарным секциям шинопроводов, подсоединенных с помощью кабеля к трансформаторной подстанции. После этого начинают бетонировать конструкцию, соблюдая при этом меры, предотвращающие повреждение изоляции и обрывы нагревательных проводов, в частности, не допускаются резкие удары и быстрое опускание рабочей части вибратора в опалубку, а также использование для уплотнения бетонной смеси штыкового и другого инвентаря с режущими кромками и т.п. Горизонтальные поверхности готового изделия укрывают гидроизоляционными материалами (пленкой, битуминизированной бумагой и т.п.), а при большой площади открытых поверхностей укладывают также гибкие плоские электронагреватели (ГЭПы) и утеплитель. Для утепления обогреваемого бетона рекомендуется применять инвентарные гибкие теплоизоляционные покрытия (ТИГП), представляющие собой влагонепроницаемый чехол из прорезиненной ткани, внутри которого заключен утепляющий холстопрошивной стекломатериал марки ХПС.

Рис. 4 . Выводы нагревательных проводов из бетона:

1 - нагревательные провода; 2 - монтажные провода; 3 - бетон

Для регулирования температуры обогрева бетона в специальной скважине устанавливают выносной термодатчик системы автоматики и подают напряжение на проволочные электронагреватели. Продолжительность обогрева определяют в зависимости от температуры и требуемой конечной прочности бетона по графикам на рис. 5.

Рис. 5 . Кривые набора прочности бетоном при различных температурах его выдерживания:

а, в - для бетона М200 на портландцементе активностью 400 - 500;

б, г - для бетона М200 на шлакопортландцементе активностью 300 - 400


2.3 . Работы по укладке нагревательного провода в конструкции и электрообогреву монолитного бетона выполняет звено из четырех человек: электромонтер 5 разряда - 1, электромонтер 3 разряда - 1, бетонщик 3 разряда - 1, арматурщик 3 разряда - 1. 2.4 . При укладке бетонной смеси горизонтальными слоями в массивные сооружения и железобетонные конструкции значительной высоты (стенки, колонны и пр.) отдельные проволочные нагреватели следует размещать в зоне этих слоев. После перекрытия бетонной смесью очередного слоя нагреватели, размещенные в нем, подключают в электрическую сеть (толщина укладываемого слоя не должна превышать 50 см). 2.5 . Калькуляция затрат труда составлена на электрообогрев нагревательными проводами конструкции с модулем Мп = 10 м -1 площадью 70 м 2 . Толщина конструкции 200 мм; шаг закладки проводов 100 мм; обогрев двусторонний (провода и ГЭП); погонная нагрузка 25 Вт/м. Продолжительность термообработки при максимальной температуре изотермического выдерживания 60 - 70 °С принята из условия достижения бетоном к концу обогрева 50 % проектной прочности. При изменении массивности конструкции (модуля) и шага установки проволочных электронагревателей следует пользоваться поправочными коэффициентами, увеличивающими или уменьшающими затраты труда и стоимость конструкции.

Калькуляция затрат труда на электрообогрев нагревательными проводами конструкций площадью 70 м 2 модулем Мп = 10 м -1

Обоснование

Наименование работ

Объем работ

Норма времени на единицу измерения,

Затраты труда на весь объем работ,

Расценки на единицу измерения, руб.-коп.

Стоимость затрат труда на весь объем работ, руб.-коп.

Состав звена и используемые механизмы

ЕНиР, 1979 г., § 23-2-28, табл. 2, п. 1, 2 Установка с помощью автокрана трансформаторной подстанции в зоне бетонирования Электромонтеры 5 разр. - 1, 3 разр. - 1 Автокран АК-7,5-1 ЕНиР, 1979 г., § 1-4 Переноска и установка на место инвентарных секций трехфазных шинопроводов при массе секции 10 кг Бетонщик 3 разр. - 1 ЕНиР, 1979 г., § 23-7-26, п. 3в Установка защитного сетчатого ограждения на болтах при помощи отдельной рамы более 2 м 2 Бетонщик 3 разр. - 1 Электромонтер 3 разр. - 1 ЕНиР, 1979 г., § 23-2-18, п. 1а Крепление плакатов по технике безопасности Электромонтер 3 разр. - 1 ЕНиР, 1979 г., § 23-4-6, п. 2а, прим. 3 Навивка на арматурный каркас нагревательного провода сечением до 4 мм 2 - с креплением в отдельных точках Бетонщик 3 разр. - 1 Арматурщик 3 разр. - 1 Электромонтер 3 разр. - 1 ЕНиР, 1980 г., § 4-1-38, п. 1 Установка гибких плоских элементов (ГЭП) и теплоизоляционных покрытий для обогрева открытых бетонных поверхностей Бетонщик 3 разр. - 1 Арматурщик 3 разр. - 1 Электромонтеры: 5 разр. - 1 3 разр. - 1 ЕНиР, 1979 г., § 23-7-34, п. Б Подсоединение к сети трансформаторной подстанции и секций шинопроводов кабелями сечением до 16 мм 2

100 концов

Электромонтер 5 разр. - 1 ЕНиР, 1979 г., § 23-4-15, п. 4 Проверка состояния изоляции кабелей и проводов мегомметром до и после прокладки Электромонтеры: 5 разр. - 1 3 разр. - 1 ЕНиР, 1979 г., § 23-7-34, табл. 1, п. а Присоединение нагревательных проводов к зажимам секций шинопроводов

100 концов

Электромонтер 3 разр. - 1 Тариф 3 разр. Дежурство электромонтера в период электрообработки бетона Электромонтер 3 разр. - 1 Итого: То же, на 1 м 3 бетона

Поправочные коэффициенты для монолитных конструкций различной массивности

Поправочные коэффициенты при различном шаге проволочных электронагревателей

2.6 . Контроль качества Перед бетонированием конструкции необходимо проверить наличие утепляющих материалов, проволочных нагревателей и ГЭП в объеме, предусмотренном технологической картой. Следует проконтролировать работоспособность и отсутствие механических повреждений изоляции проводов, ГЭП, коммутационной сети, трансформаторов и другого электрооборудования и систем автоматики температурного контроля; наличие токоизмерительных клещей, вольтметра, диэлектрических ковриков, перчаток и т.д. До начала укладки бетонной смеси должно быть проверено качество очистки от снега и наледи основания, опалубки и арматуры. После бетонирования требуется проконтролировать надежность укрытия горизонтальных поверхностей конструкции гидроизоляционным материалом и толщину утеплителя. Не реже двух раз в смену полагается измерять температуру бетонной смеси в кузовах автомобилей-самосвалов и в бункерах на глубине 5 - 10 см, а после укладки каждого слоя в конструкцию - на глубине 5 см. Контроль температуры обогреваемого бетона следует производить ртутными термометрами. Число точек измерения температуры устанавливается из расчета не менее одной точки на 3 м 3 бетона. Температуру бетона в процессе обогрева измеряют каждый час. Не реже двух раз за смену, а в первые три часа прогрева - три раза следует измерять ток и напряжение в питающей цепи. Отсутствие искрения в местах электрических соединений проверяют визуальным осмотром. Контроль прочности бетона может осуществляться по фактическому температурному режиму наименее нагретых участков. После распалубливания определяют прочность прогретого бетона, имеющего положительную температуру (с помощью молотка НИИмосстроя, молотка Кашкарова, ультразвуковым способом, либо высверливанием кернов и испытанием). Общие требования к контролю качества бетона должны соответствовать СНиПу Ш-15-76. 2.7 . Техника безопасности При эксплуатации ГЭП (греющего элемента), нагревательных проводов и силового питающего электрооборудования помимо общих правил безопасного производства работ согласно СНиПу Ш-4-80 «Техника безопасности в строительстве» следует руководствоваться «Правилами технической эксплуатации и безопасности электроустановок промышленных предприятий». Электробезопасность на строительной площадке, участках производства работ и рабочих местах необходимо обеспечивать в соответствии с требованиями ГОСТа 12.1.013-78. Лица, занятые на строительно-монтажных работах, должны быть обучены безопасным способам ведения работ, а также уметь оказать первую доврачебную помощь при электротравме. В строительно-монтажной организации следует иметь инженерно-технического работника, ответственного за безопасную эксплуатацию электрохозяйства организации, имеющего квалификационную группу по технике безопасности не ниже IV . Ответственность за безопасное производство конкретных строительно-монтажных работ с использованием электроустановок возлагается на инженерно-технических работников, руководящих производством этих работ. При устройстве электрических сетей на строительной площадке необходимо предусматривать возможность отключения всех электроустановок в пределах отдельных объектов и участков производства работ. Работы, связанные с присоединением (отсоединением) проводов, должны выполнять специалисты по электротехнике, имеющие соответствующую квалификационную группу по технике безопасности. В течение всего периода эксплуатации электроустановок на строительных площадках должны быть установлены знаки безопасности по ГОСТУ 12.4.026-76. Технический персонал, проводящий электрообогрев бетона, должен пройти обучение и проверку знаний квалификационной комиссией по технике безопасности с получением соответствующих удостоверений. Дежурные электромонтеры должны иметь квалификацию не ниже III группы. Рабочих, занятых на электрообогреве бетона, снабжают резиновыми сапогами или диэлектрическими галошами, а электромонтеров, кроме того, резиновыми перчатками. Подключение нагревательных проводов, замеры температуры техническими термометрами производят при отключенном напряжении. Зона, где производится электрообогрев бетона, должна быть ограждена; на видном месте следует поместить предупредительные плакаты, правила по технике безопасности, противопожарные средства; в ночное время зона должна быть хорошо освещена, для чего на ограждении устанавливают красные лампочки, автоматически загорающиеся при подаче напряжения в линии обогрева. Хождение людей, размещение посторонних предметов на поверхности греющих элементов, находящихся под напряжением, запрещается. Доступ посторонних лиц в зону обогрева запрещается. Все металлические нетоковедущие части электрооборудования и арматуру следует надежно заземлить, присоединив к ним нулевой провод (жилу) питающего кабеля. При использовании защитного контура заземления перед включением напряжения необходимо проверить сопротивление контура, которое должно быть не более 4 Ом. Около трансформаторов, рубильников и распределительных щитов устанавливают настилы, покрытые резиновыми ковриками. Проверку сопротивления изоляции проводов с помощью мегомметра производит персонал, квалификационная группа по технике безопасности которого не ниже III . Концы проводов, которые могут оказаться под напряжением, необходимо изолировать или оградить. Участок электрообогрева бетона должен постоянно находиться под надзором дежурного электрика. ЗАПРЕЩАЕТСЯ: перемещать ГЭП волоком за кабельные отводы; укладывать ГЭП на неподготовленную поверхность, имеющую штыри или режущие кромки, что может повредить целостность диэлектрической изоляции проволочных нагревателей; укладывать ГЭП с нахлестом один на другой, а также на поверхности, имеющие впадины или ямы, нарушающие теплоотдачу и вы зывающие местные перегревы; подключать ГЭП и нагревательные провода в сеть с напряжением, превышающим рабочее для конкретных объектов; подключать в электросеть находящиеся на воздухе нагревательные провода, частично или полностью не забетонированные в конструкции или не зарытые в грунт; подключать под напряжение ГЭП и нагревательные провода с механическими повреждениями изоляции, а также ненадежно выполненными коммутационными соединениями; включать нагреватели в сеть с напряжением свыше 220 В. Допускается проводить измерение температуры вручную термометрами и бетонировать монолитные конструкции, в том числе с послойной укладкой бетонной смеси, при не отключенных ГЭП и нагревательных проводах от сети напряжением не более 60 В при соблюдении следующих требований: в зоне действия глубинного вибратора не имеется нагревательных проводов и отводов, находящихся под напряжением; арматура заземлена; квалификационная группа персонала не ниже II ; персонал выполняет работы в резиновой диэлектрической обуви и рукавицах; работы выполняются под наблюдением электрика.

3 . ТЕХНИКО-ЭКОНОМИЧЕСКИЕ ПОКАЗАТЕЛИ (на 1 м 3 бетона)

Наименование

При двухстороннем обогреве нагревательными проводами монолитных конструкций толщиной, мм

Затраты труда, чел.-ч
Заработная плата, руб.-коп.
Затраты машинного времени, маш.-ч
Выработка одного рабочего в смену, м 3 бетона
В карте приведены схемы электрообогрева бетона при устройстве ростверков, плит перекрытий, подпорной стенки и гиперболической градирни.

4 . МАТЕРИАЛЬНО-ТЕХНИЧЕСКИЕ РЕСУРСЫ

Потребность в машинах, оборудовании, инструментах и приспособлениях

Наименование

Марка (ГОСТ, ТУ)

Количество

Техническая характеристика

Комплектная трансформаторная подстанция для обогрева бетона КТП-63-05 Мощность 63 кВт; максимальный ток на стороне НН - 520 А
Блок-приставка автоматического регулирования температуры АРТ-2 Диапазон регулирования - от 20 до 100 °С
Воздухонагреватель ВПТ-400
Греющие плоские элементы ГЭП Удельная мощность до 600 Вт/м; температура обогрева 70 ° С
Гибкие теплоизоляционные покрытия ТИГП Толщина 30 мм; приведенная масса 3 кг/м 2
Токоизмерительные клещи Ц-91
Диэлектрические
коврик
галоши
перчатки
Нагревательный провод ПОСХВ, ТУ 16-505.524-73 Могут использоваться трансляционные провода марок ППЖ, ПВЖ, ПРСП и др.
Инвентарные секции трехфазных шинопроводов Длина секции 1,5 м; масса 10 кг Кабель

КРПТ 3 ´ 10 мм 2 , ГОСТ 13497-68

Инвентарное сетчатое ограждение Высота 1,5 м
Противопожарный щит С углекислотными огнетушителями
Сигнальные лампочки (красные) На напряжение 36 В
Прожектор Мощность 1 кВт
Трубки из термоусаживающегося полиэтилена или изоляционная лента
Технические ртутные термометры Предел измерения температуры 40 - 100 °С
По всем вопросам, касающимся использования нагревательных проводов при устройстве монолитных бетонных конструкций, следует обращаться в отдел бетонных работ ЦНИИОМТП по адресу: 127434, Москва, Дмитровское шоссе, 9.

Схема электрообогрева ростверка. Фрагмент плана

Лист 1

1 - инвентарная трехфазнаясекция шинопроводов; 2 - диэлектрический коврик; 3 - трансформаторная подстанция КТП-63-06; 4 - блок-приставка АРТ-2; 5 - инвентарное ограждение; 6 - сигнальные лампочки красного цвета; 7 - прожектор; 8 - ростверки

Схема электрообогрева ростверка

Лист 2

1 - теплоизоляционное гибкое покрытие (ТИГП); 2 - греющие плоские элементы (ГЭП); 3 - деревянный утепленный щит; 4 - металлический пустотообразователь; 5 - нагревательные провода; 6 - термодатчик

Узел I см . Лист 3

Схема электрообогрева ростверка

Лист 3

1 - шпилька; 2 - деревянный утепленный щит; 3 - инвентарный разъем; 4 - теплостойкие монтажные провода; 5 - защитный каркас; 6 - трубчатые электрические нагреватели ТЭНы; 7 - асбестовый шнур; 8 - хомуты

Лист 4

1 - инвентарная трехфазная секция шинопроводов; 2 - прожектор; 3 - блокприставка АРТ-2; 4 - трансформаторная подстанция КТП-63-06; 5 - диэлектрический коврик; 6 - инвентарное ограждение; 7 - сигнальная лампочка красного цвета

Сечение А - А см. Лист 5

Схема электрообогрева плит перекрытия

Лист 5

1 - греющие плоские элементы (ГЭП); 2 - теплоизоляционное гибкое покрытие (ТИГП); 5 - термодатчик; 4 - блок - приставка АРТ-2; 5 - деревянные переносные щиты; 6 - трансформаторная подстанция НТЛ-63-06; 7 - нагревательные провода; 8 - утепленная опалубка; 9 - бетон плиты

Лист 6

1 - трансформаторная подстанция КТП-63-06; 2 - блок - приставка АРТ-2; 3 - инвентарное ограждение; 4 - прожекторы; 5 - сигнальная лампочка красного цвета; 6 - диэлектрический коврик; 7 - инвентарная трехфазная секция шинопроводов

Сечение А - А см. Лист 7

Схема электрообогрева подпорной стенки

Лист 7

1 - греющие плоские элементы (ГЭЛ); 2 - нагревательные провода; 3 - термодатчик; 4 - теплоизоляционное гибкое покрытие (ТИГП)

Лист 8

1 - трансформаторная подстанция КТП-63-06; 2 - блок - приставка АРТ-2; 3 - диэлектрический коврик; 4 - скользящая опалубка

Сечение А - А см. лист 9. Узел I см. лист 10

Схема электрообогрева гиперболической градирни

Лист 9

1 - блок - приставка АРТ-2; 2 - трансформаторная подстанция КТП-63-05; 3 - прожектор; 4 - скользящая опалубка; 5 - теплоизоляционное гибкое покрытие (ТИГП)

Схема электрообогрева гиперболической градирни

Лист 10

1 - магистральный отвод; 2 - магистральный кабель; 3 - нагревательный провод

1. Область применения. 1 2. Организация и технология строительного процесса. 2 3. Технико-экономические показатели. 10 4. Материально-технические ресурсы.. 11 5. Схемы электрообогрева бетона при возведении отдельных видов бетонных конструкций

Открытое акционерное общество

УТВЕРЖДАЮ

Генеральный директор, к. т. н.

С. Ю. Едличка

ТЕХНОЛОГИЧЕСКАЯ КАРТА
НА ОБОГРЕВ МОНОЛИТНЫХ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ
ТЕПЛОГЕНЕРАТОРАМИ НА ЖИДКОМ ТОПЛИВЕ

48-03 ТК

Главный инженер

A. B. Колобов

Начальник отдела

Б. И. Бычковский

Карта содержит организационно-технологические и технические решения по обогреву монолитных конструкций теплогенераторами на жидком топливе, применение которых при производстве монолитных бетонных и железобетонных работ при отрицательных температурах воздуха должно способствовать ускорению работ, снижению затрат труда и повышению качества возводимых конструкций в зимних условиях.

В технологической карте приведены область применения, организация и технология выполнения работ, требования к качеству и приемке работ, калькуляция затрат труда, график производства работ, потребность в материально-технических ресурсах, решения по безопасности и охране труда и технико-экономические показатели.

Исходные данные и конструктивные решения, применительно к которым разработана карта, приняты с учетом требований СНиП, а также условий и особенностей, характерных для строительства в г. Москве.

Технологическая карта предназначена для инженерно-технических работников строительных и проектных организаций, а также производителей работ, мастеров и бригадиров, связанных с производством монолитных бетонных и железобетонных работ при отрицательных температурах воздуха.

В корректировке технологической карты участвовали сотрудники ОАО ПКТИпромстрой:

Савина О. А. - компьютерная обработка и графика;

Черных В. В. - технологическое сопровождение;

Холопов В. Н. - проверка технологической карты;

Бычковский Б. И. - техническое руководство, корректура и нормоконтроль;

Колобов А. В. - общее техническое руководство разработкой технологических карт;

К. т. н. Едличка С. Ю. - общее руководство разработкой технологических карт.

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

1.1 Сущность применения теплогенераторов на жидком топливе заключается в использовании тепловой энергии, выделяемой теплогенераторами и направленной на открытые или опалубленные поверхности конструкций для их термообработки при бетонировании в зимних условиях.

1.2 Область применения теплогенераторов включает:

Отогрев промороженных бетонных и грунтовых оснований, арматуры, закладных металлических деталей и опалубки, удаление снега и наледи;

Интенсификацию твердения бетона конструкций и сооружений, возводимых в скользящей либо объемно-переставной опалубках, плит перекрытий и покрытий, вертикальных и наклонных конструкций, бетонируемых в металлической опалубке;

Предварительный отогрев зоны стыков сборных железобетонных конструкций и ускорение твердения бетона или раствора при заделке стыков;

Ускорение твердения бетона или раствора при укрупнительной сборке большеразмерных железобетонных конструкций;

Создание тепловой защиты поверхностей, недоступных для устройства теплоизоляции.

1.3 В технологической карте приводятся:

Указания по подготовке конструкций к бетонированию и требования к готовности предшествующих работ и строительных конструкций;

Схемы организации рабочей зоны на время производства работ;

Методы и последовательность производства работ, описание процесса установки обогревающих устройства;

Температурный режим, обеспечивающий необходимый набор прочности;

Профессиональный численно-квалификационный состав рабочих;

Калькуляция затрат труда;

График выполнения работы.

1.4 Численно-квалификационный состав рабочих, график работы, калькуляция затрат труда, а также потребность в необходимых ресурсах определены применительно к обогреву монолитных конструкций с модулем поверхности Мп от 10 до 14*, возводимых в крупно-щитовой опалубке, размеры секций которой 3,0 × 6,0 м.

* Модуль поверхности бетонируемой конструкции определяется отношением суммы площадей охлаждаемых поверхностей конструкции к ее объему и имеет размерность «М-1».

1.5 Расчет обогрева конструкций произведен с учетом следующих условий:

Температура наружного воздуха - 20 °С

Скорость ветра 5 м/с

Температура укладываемого бетона 15 °С

Температура изотермического прогрева 40 °С

Скорость разогрева бетона 2,5 °С/час

Время разогрева 10 час

Прочность бетона к моменту остывания до 0 °С 70 % R28

Конструкций опалубки - стальной лист толщиной 4 мм, утепленный снаружи минераловатными плитами толщиной 50 мм и закрытый фанерой толщиной 3 мм.

1.6 При привязке настоящей технологической карты к другим конструкциям, на которые распространяется область ее применения, подлежит уточнению расчетная часть, а также калькуляция затрат труда, график производства работ и потребность в материально-технических ресурсах с учетом условий осуществления обогрева.

2 ОРГАНИЗАЦИЯ И ТЕХНОЛОГИЯ ВЫПОЛНЕНИЯ РАБОТ

2.1 До начала работ по обогреву монолитных конструкций теплогенераторами выполняются следующие подготовительные операции:

Выполняют теплотехнический расчет обогрева стен и перекрытий теплогенераторами на жидком топливе;

Устанавливают опалубку, арматурные сетки и каркасы, предварительно очистив от мусора, снега и наледи;

Устраивают теплоизоляцию толщиной 50 мм боковых поверхностей стен;

Устанавливают в рабочей зоне теплогенераторы и опробывают их работу;

Устраивают ограждения и подводят сигнализацию, согласно схеме организации рабочей зоны, представленной на рисунке ;

Монтируют противопожарный щит с углекислотными огнетушителями, помещают в рабочей зоне указания по безопасности и охране труда;

Проверяют временное освещение рабочих мест;

Обеспечивают рабочее звено необходимым инструментом, индивидуальными средствами защиты;

Проводят инструктаж.

1 - теплогенератор ТА-16 на жидком топливе - 3 шт.; 2 - инвентарное ограждение; 3 - противопожарный щит; 4 - сплошное брезентовое покрытие по всей площади проема

Рисунок 1 - Схема организации рабочей зоны обогрева стен и перекрытий теплогенераторами на жидком топливе.

2.2 В целях ускорения набора прочности монолитных конструкций используется тепловая энергия теплогенераторов, количество которых для обогрева того или иного помещения определяется теплотехническим расчетом. Пример теплотехнического расчета обогрева стен и перекрытий теплогенераторами на жидком топливе приведен ниже.

2.3 Принципиальная схема установки опалубки в подлежащем обогреву теплогенераторами помещении высотой 2,7 м представлена на рисунке .

1 - металлическая конструкция объемно-переставной опалубки; 2 - палуба стальная = 4 мм; 3 - полиэтиленовая пленка; 4 - теплоизоляция (минераловатные маты) - толщиной 50 мм; 5 - фанера толщиной 3 мм

Рисунок 2 - Принципиальная схема установки опалубки

2.4 Опалубку и арматуру отогревают включением теплогенераторов. В настоящей карте для обогрева бетона согласно расчету приняты три мобильных теплогенератора «Thermobile», техническая характеристика которых приведена в таблице .

Общий вид теплогенератора «Thermobile» представлен на рисунке .

Таблица 1

Характеристика теплогенераторов «Thermobile»

Рисунок 3 - Общий вид теплогенератора «Thermobile»

Указанный теплогенератор позволяет автоматически контролировать процесс горения. При перегреве, задымлении или нехватке топлива теплогенератор отключается автоматически. Теплогенератор оборудован термостатом, автоматически поддерживающим заданную температуру в помещении. В качестве топлива могут использоваться керосин или солярка без дополнительной настройки. Среднее время работы на одной заправке составляет 8 - 10 часов.

2.5 Необходимые исходные данные для расчета обогрева включают:

Вид конструкции - стена толщиной 200 мм

перекрытие толщиной 140 мм

Тип опалубки - крупнощитовая

Конструкция опалубки - металлическая с внутренней стороны не утепленная, с наружной стороны - утепление минераловатными матами толщиной 50 мм с защитной крышкой из фанеры толщиной 3 мм. Коэффициент теплопередачи опалубки Коп = 3,2 Вт/м2·°С

Конструкция гидро- и теплоизоляции - полиэтиленовая пленка, минераловатные маты толщиной 50 мм. Коэффициент теплопередачи Кп = 3 Вт/м2·°С

Температура наружного воздуха - минус 20 °С

Скорость ветра - 5 м/сек

Температура бетона начальная - tбн = 15 °С

Температура изотермического прогрева - tиз = 40 °С

Скорость разогрева бетонной смеси - 2,5 °С/час

Время разогрева - 10 час

Прочность бетона к моменту остывания до 0 °С - 70 % R28

Вначале определяем режим обогрева конструкции до приобретения бетоном 70 % R28.

За период разогрева с 15 °С до 40 °С при средней температуре бетона 27,5 °С за 10 часов бетон наберет 15 % R28.

Время остывания с 40 °С изотермического выдерживания до 0 °С определяется по формуле:

(1)

где С - удельная теплоемкость бетона, кДж/кг·°С (0,84)

g - объемная масса бетона, кг/м3 (2400)

Мп - модуль поверхности, м-1 (11)

3,6 - коэффициент перевода в часы

К - коэффициент теплопередачи, Вт/м2·°С (11)

tизотерм - температура изотермического выдерживания, °С

tocтыв. - температура, до которой остывает бетон, °С

tб.cp. - средняя температура остывания бетона, °С

tн.в. - температура наружного воздуха, °С

часов.

Учитывая, что за время остывания бетон наберет незначительную прочность, принимаем, что к концу изотермического прогрева бетон должен набрать 70 % R28.

По кривой набора прочности графиков определяем, что при температуре изотермического прогрева 40 °С оставшиеся 55 % прочности бетон наберет за 54 часа. Таким образом, получаем время разогрева 10 часов, время изотермического прогрева 54 часа и время остывания 4,6 часов.

Мощность, необходимая для разогрева бетонной смеси от 15 °С до 40 °С, определяется по формуле

(2)

где С - удельная теплоемкость бетонной смеси, кДж/кг·°С

g - объемная масса бетона, кг/м3

V - объем бетона, м3

tиз. - температура изотермического прогрева, °С

tб.н. - температура бетона начальная, °С

t - время разогрева, час

кВт

Мощность, необходимая на компенсацию теплопотерь через опалубку, теплозащиту и через проем, закрытый брезентом, определяется по формуле

где К 1,2,3 - коэффициент теплопередачи ограждающих конструкций, Вт/м2·°С

S - площадь охлаждения

a - коэффициент, учитывающий скорость ветра

tиз. - температура изотермического прогрева, °С (40 °С)

tн. - температура наружного воздуха, °С (минус 20 °С)

tвн. - температура воздуха внутри помещения, °С (50 °С)

Общая потребная мощность составляет 27,9 кВт + 15,3 кВт = 43,2 кВт.

Для обогрева бетона принимаем три теплогенератора «Thermobile 16 А » мощностью 15,5 тыс. ккал каждый.

Суммарная мощность всех теплогенераторов составляет 15,5 × 3 × 1,16 = 53,94 кВт, что удовлетворяет общую потребную мощность.

Расход тепловой мощности на обогрев бетона до приобретения им 70 % R28 составит

W = (3 × 15,5 × 1,16) × 10 + (2 × 15,5 × 1,16) × 54 = 2481,2 кВтч

Удельный расход тепловой мощности на обогрев 1 м3 бетона составит

2481,2: 10,6 = 234,1 кВтч

Расход топлива составит

Т = 1,8 × 3 × 10 + 1,8 × 2 × 54 = 248,4 л или 24,8 л/м3

2.6 Подготовка оснований и укладка бетонной смеси производятся с учетом следующих требований:

При температуре воздуха ниже минус 10 °С арматуру диаметром более 25 мм, а также арматуру прокатных изделий и крупные металлические закладные детали при наличии на них наледи предварительно отогревают теплым воздухом до положительной температуры. Удаление наледи с помощью пара или горячей воды не допускается;

Укладку бетонной смеси производят непрерывно, без перевалок, средствами, обеспечивающими минимальное охлаждение смеси при ее подаче. Температура бетонной смеси, уложенной в опалубку, не должна быть ниже плюс 15 °С.

2.8 В случае возникновения перерывов в бетонировании поверхность бетона укрывают и утепляют, а при необходимости обогревают.

2.9 Обогрев бетона начинается после укладки и уплотнения бетонной смеси при устройстве монолитных стен и перекрытий и устройства по перекрытию гидроизоляции и теплоизоляции. К началу обогрева конструкции открытый проем завешивается брезентом.

2.12 Температура разогрева бетонной смеси регулируется термостатом, оборудованным в теплогенераторе.

2.13 Во время обогрева бетона необходимо вести наблюдение за состоянием работы теплогенераторов. В случае обнаружения неисправности необходимо немедленно устранить неисправность.

2.14 Скорость остывания бетона в соответствии с графиком температурного режима составляет 8 °С/ч. Для конструкции с модулем поверхности Мп = 10 - 14 скорость остывания допускается не более 10 °С/ч. Два раза в смену замеряют температуру наружного воздуха, результаты замеров фиксируются в журнале работ.

1 - монолитная конструкция; 2 - утеплитель; 3 - пенал из тонкостенной стальной трубки; 4 - индустриальное масло; 5 - термодатчик

Рисунок 5 - Установка термодатчика в обогреваемой конструкции

2.15 Прочность бетона проверяется по фактическому температурному режиму. Соблюдение графика температурного режима, приведенного в п. , позволяет получить требуемую прочность. После распалубливания прочность бетона, имеющего положительную температуру, рекомендуется определять с помощью молотка конструкции НИИ Мосстроя, ультразвуковым способом или высверливанием и испытанием кернов. Набор прочности бетона при различных температурах его выдерживания определяется графиком, представленным на рисунке .

а, в - для бетона класса В25 на портландцементе активностью 400 - 500;

б, г - для бетона класса В25 на шлакопортландцементе активностью 300 - 400

Рисунок 6 - Кривые набора прочности бетоном при различных температурах его выдерживания

2.16 Ниже приведен пример определения прочности бетона.

Определить прочность бетона при скорости подъема температуры 10 °С в час, температуре изотермического прогрева 70 °С, его продолжительности 12 часов и остывании со скоростью 5 °С в час до конечной температуры 6 °С. Начальная температура бетона tн.б. = 10 °С.

1. Определяем продолжительность подъема температуры и среднюю температуру подъема:

продолжительность подъема температуры = 6 час

при средней температуре = 40 °С

На оси абсцисс откладываем продолжительность нагревания (6 час) точки «А» согласно рисунку и проводим перпендикуляр до пересечения с кривой прочности при 40 °С (точка «Б»).

Величина прочности за время подъема температуры определяется проекцией точки «Б» на ось ординат (точка «В») и составляет 15 %.

Рисунок 7 - Пример определения прочности бетона

Для определения прироста прочности за время изотермического прогрева за 12 часов при температуре 70 °С из точки «Л» на кривой прочности при 70 °С опускаем перпендикуляр на ось абсцисс (точка «М»). Из точки «М» откладываем 12 часов (точка «Н»). Восстанавливая перпендикуляр из точки «Н», получаем точку «К» на кривой прочности при 70 °С. Проецируя точку «К» на ось ординат, получаем точку «З». Отрезок «ВЗ» показывает предел прочности за 12 часов при температуре 70 °С и составляет 46 % R28.

Для определения прироста прочности за время остывания 13 часов при средней температуре 38 °С из точки «З» проводим прямую до пересечения с кривой прочности при 38 °С и получаем точку «Ж». Из точки «Ж» на ось абсцисс опускаем перпендикуляр и получаем точку «Е», из которой откладываем 13 часов и получаем точку «Д». Из точки «Д» восстанавливаем перпендикуляр до пересечения с кривой набора прочности при температуре 38 °С (точка «Г»). Проецируя точку «Г» на ось ординат, получаем точку «И». Отрезок «ЗИ» дает нам величину прироста прочности за время остывания 9 % R28.

За весь цикл термообработки в течение 31 часа (6 + 12 + 13) бетон приобретает прочность 15 + 46 + 9 = 70 % R28.

Для каждого конкретного состава бетона строительной лабораторией должен быть уточнен на опытных образцах-кубах оптимальный режим выдерживания.

2.17 Теплоизоляция может быть снята не ранее того момента, когда температура бетона в наружных слоях конструкции достигает + 5 °С и не позже, чем слои остынут до 0 °С. Примерзание опалубки и теплозащиты к бетону не допускается.

2.18 Для предотвращения появления трещин в конструкциях перепад температур между открытой поверхностью бетона и наружным воздухом не должен превышать:

20 °С для монолитных конструкций с Мп < 5;

30 °С для монолитных конструкций с Мп ≥ 5.

В случае невозможности соблюдения указанных условий поверхность бетона после распалубливания укрывается брезентом, толью, щитами и др. материалами.

2.19 Работы по теплоизоляции обогреваемой поверхности, расстановке теплогенераторов и прогреву бетона выполняет звено из трех человек, распределение операций между которыми по обогреву стен и перекрытия представлено в таблице .

Таблица 2

Распределение операций по исполнителям

2.20 Операции по бетонированию, теплоизоляции и обогреву монолитных конструкций производятся в следующей последовательности:

Моторист устанавливает теплогенераторы, производит заправку их топливом, производит запуск теплогенераторов;

Бетонщики производят укладку бетонной смеси, укрывают открытые поверхности бетона гидроизоляцией и теплоизоляцией.

Перед пуском теплогенераторов проем секции должен быть закрыт брезентом. Пуск теплогенератора в работу производится только после выполнения всех требований по безопасности и охране труда.

В целях сбережения топлива при производстве работ рекомендуется:

При определении средств и продолжительности транспортирования бетонной смеси исключить возможность ее охлаждения более величины, установленной техническим расчетом;

Применять бетон более высокой относительной прочности при меньшей продолжительности обогрева;

Применять максимально допустимую температуру обогрева бетона, сокращать длительность обогрева за счет учета нарастания прочности при остывании;

Устраивать теплоизоляцию поверхности бетона и опалубки, подвергающихся охлаждению;

Соблюдать теплотехнический режим параметров обогрева;

Применять химические добавки для сокращения продолжительности прогрева.

3 ТРЕБОВАНИЯ К КАЧЕСТВУ И ПРИЕМКЕ РАБОТ

3.1 Контроль качества обогрева монолитных конструкций при отрицательной температуре воздуха с помощью теплогенераторов производят в соответствии с требованиями СНиП 3.01.01-85 * «Организация строительного производства» и СНиП 3.03.01-87 «Несущие и ограждающие конструкции».

3.2 Производственный контроль качества обогрева осуществляют прорабы и мастера строительных организаций.

3.3 Производственный контроль включает входной контроль оборудования, эксплуатационных материалов, бетонной смеси и подготовленных под бетонирование конструкций, операционный контроль отдельных производственных операций и приемочный контроль требуемого качества монолитной конструкции в результате обогрева бетона с помощью теплогенератора.

3.4 При входном контроле оборудования, эксплуатационных материалов, бетонной смеси и подготовленного основания проверяются внешним осмотром их соответствие нормативным и проектным требованиям, а также наличие и содержание паспортов, сертификатов, актов на скрытые работы и других сопроводительных документов. По результатам входного контроля должен заполняться «Журнал входного учета и контроля качества получаемых деталей, материалов, конструкций и оборудования».

3.5 При операционном контроле проверяют соблюдение состава подготовительных операций, технологию наладки теплогенераторов, укладки бетона в конструкцию опалубки в соответствии с требованиями рабочих чертежей, норм, правил и стандартов, процесс обогрева, температуру в соответствии с расчетными данными. Результаты операционного контроля фиксируются в журнале работ.

Основными документами при операционном контроле являются технологическая карта и указанные в карте нормативные документы, перечень операций, контролируемых производителем работ (мастером), данные о составе, сроках и способах контроля, требуемые прочностные показатели монолитных стен и перекрытия в результате обогрева.

3.6 При приемочном контроле проверяют прочностные и геометрические параметры стен и перекрытия в результате обогрева бетона теплогенераторами.

3.7 Скрытые работы подлежат освидетельствованию с составлением актов по установленной форме. Запрещается выполнение последующих работ при отсутствии актов освидетельствования предшествующих скрытых работ.

3.8 Результаты операционного и приемочного контроля фиксируются в журнале работ. Основными документами при операционном и приемочном контроле являются настоящая технологическая карта, указанные в ней нормативные документы, а также перечни операций и процессов, контролируемых прорабом или мастером, данные о составе, сроках и способах контроля, изложенные в таблице .

Таблица 3

Состав и содержание производственного контроля качества

Прораб или мастер

Операции, подлежащие контролю

Операции при входном контроле

Подготовительные операции

Операции при бетонировании конструкций

Операции при приемочном контроле

Состав контроля

Проверка работоспособности теплогенераторов

Устройство защитного ограждения и освещения на участке работ

Очистка основания опалубки, арматуры от снега, наледи. Утепление конструкции

Укладка бетона в конструкцию монолитных стен и перекрытия

Контроль температуры бетона

Контроль прочности бетона

Соответствие готовых монолитных стен и перекрытия требованиям проекта

Методы контроля

Визуально-инструментальная проверка

Визуальная и по приборам

Визуально-инструментальная

Время контроля

До начала бетонирования

До и после бетонирования

В процессе бетонирования, обогрева и выдерживания

После обогрева

Кто привлекается к контролю

Механик строительной организации

Мастер, прораб

Лаборатория

Лаборатория, технадзор

3.9 Контроль температуры обогреваемого бетона производят техническими термометрами или дистанционно с помощью датчика температуры, установленного в скважину. Число точек измерений температуры устанавливается в среднем из расчета не менее одной точки на 10 м2 бетонируемой поверхности. Температуру бетона измеряют в процессе разогрева не реже чем через два часа.

3.10 Скорость подъема температуры при тепловой обработке и скорость остывания бетона по окончании тепловой обработки монолитных конструкций не должны превышать соответственно 15 °С и 10 °С в час.

3.11 Контроль прочности монолитной конструкции осуществляется по фактическому температурному режиму. Прочность бетона по окончании обогрева и остывания, которая должна быть 70 % R28, достигается при условии соблюдения параметров графика, приведенного в п. .

Прочность бетона в результате обогрева определяется с помощью молотка конструкции НИИ Мосстроя, ультразвуковым способом, либо высверливанием кернов и испытанием.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ И ОХРАНЫ ТРУДА, ЭКОЛОГИЧЕСКОЙ И ПОЖАРНОЙ БЕЗОПАСНОСТИ

4.1 При бетонировании конструкций и эксплуатации теплогенераторов следует соблюдать правила безопасного производства работ согласно СНиП 12-03-2001 .

4.2 Места установок теплогенераторов должны быть обеспечены противопожарным оборудованием и инвентарем. Лица, занятые на строительно-монтажных работах, должны быть обучены безопасным способам ведения работ с получением соответствующих удостоверений, а также умению оказать первую доврачебную помощь при травме или ожогах.

4.3 В строительно-монтажной организации должен быть инженерно-технический работник, ответственный за охрану труда и пожарную безопасность, безопасную эксплуатацию оборудования, аттестованный моторист, обученный согласно ГОСТ 12.0.004-90 .

4.4 Горючее для заправки теплогенератора должно храниться в отдельном помещении, оборудованном первичными средствами пожаротушения.

4.5 Заправка горючим производится только при выключенных и обязательно остывших двигателях. Выполняют заправку только лица, ответственные за работу теплогенераторов (мотористы).

4.6 В течение всего периода эксплуатации теплогенераторов на строительных площадках должны быть установлены знаки безопасности по ГОСТ Р 12.4.026-2001 . Места заправки ночью должны освещаться только электролампами или прожекторами, установленными не ближе 5 м от места заправки.

4.7 Технический персонал, проводящий обогрев бетона, должен пройти обучение в Учебном комбинате и проверку знаний квалификационной комиссией по технике безопасности с получением соответствующих удостоверений.

4.8 Зона, где производится обогрев, ограждается. На видном месте помещаются предупредительные плакаты, правила по безопасности и охране труда, противопожарные средства. В ночное время ограждение зоны освещается, для чего на нем устанавливаются красные лампочки напряжением не более 42 В. Проект временного освещения разрабатывается специализированной организацией по заказу подрядчика.

Участок обогрева бетона должен постоянно находиться под надзором дежурного моториста.

Доступ посторонних лиц в зону производства работ;

Размещать легковоспламеняющиеся материалы вблизи прогреваемых конструкций.

4.10 При производстве работ по обогреву монолитных конструкций теплогенераторами на жидком топливе необходимо строго руководствоваться требованиями безопасности и охраны труда согласно:

Таблица 4

Ведомость потребности в машинах, механизмах, инструментах, материалах

Наименование

Техническая характеристика

Теплогенератор

«Thermobile» ТА16

Мощность, ккал/час 16000 Распространитель - малое государственное предприятие «ЭТЭКА»

Термометры технические

Предел измерения 140 °С

Инвентарное сетчатое ограждение

h = 1,1 м

Полиэтиленовая пленка

Толщина, мм 0,1

Ширина, м 1,4

Минераловатные маты

Противопожарный щит

С углекислотным огнетушителем

Прожектор

Мощность, Вт 1000

Бетонная смесь

По проекту

Сигнальные лампочки

Напряжение, В 42

Комплект знаков по безопасности и охране труда

6 ТЕХНИКО-ЭКОНОМИЧЕСКИЕ ПОКАЗАТЕЛИ

6.1 Технико-экономические показатели приведены на бетонируемую конструкцию и на 1 м3 бетона, указанные в калькуляции.

6.2 Затраты труда на обогрев монолитных конструкций теплогенераторами подсчитаны по «Единым нормам и расценкам на строительные, монтажные и ремонтно-строительные работы», введенные в действие в 1987 г. и представлены в таблице .

Калькуляция затрат труда составлена на обогрев монолитных конструкций стен и перекрытий, возводимых в крупнощитовой опалубке. Стены толщиной 200 мм, высотой 2,7 м. Перекрытия толщиной 140 мм с размерами в плане 3 × 6 м. Общий объем бетона 10,6 м3.

Таблица 5

Калькуляция затрат труда

Наименование работ

Объем работ

Норма времени

Затраты труда

рабочих, чел.-ч

рабочих, чел.-ч

машинистов, чел.-ч, (работа машин, маш.-ч)

Опытные данные

Установка теплогенератора

Опытные данные ЦНИИОМТП

Установка сетчатого ограждения, плакатов по технике безопасности, сигнальных лампочек

Е4-1-54 № 10 (применит)

Укрытие проема брезентом

Предварительный отогрев арматуры и опалубки

Е4-1-49В № 1в

Бетонирование стен

Е4-1-49Б № 10

Бетонирование перекрытия

Устройство гидро- и теплоизоляции

Тарифно-квалификационный справочник

Обогрев бетонной смеси (в т.ч. изотермический прогрев)

Снятие теплоизоляции

Е4-1-54 № 12 (применит)

Снятие брезента укрытия с проема

Опытные данные

Демонтаж теплогенераторов

6.3 Продолжительность работы на обогрев конструкций теплогенераторами определяется календарным планом производства работ согласно таблице 6 78,9

Расход топлива:

На 1 м3 бетона

Продолжительность разогрева

Скорость разогрева

Продолжительность изотермической выдержки

«Несущие и ограждающие конструкции». Безопасность труда в строительстве. Отраслевые типовые инструкции по охране труда.

8 Руководство по электротермообработке бетона. НИИЖБ Госстроя СССР. Москва, Стройиздат, 1974 г.

9 Руководство по производству бетонных работ в зимних условиях, районах Дальнего Востока, Сибири и Крайнего Севера. ЦНИИОМТП Госстроя СССР, Москва, Стройиздат, 1982 г.

ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО

ПРОЕКТНО-КОНСТРУКТОРСКИЙ И ТЕХНОЛОГИЧЕСКИЙ
ИНСТИТУТ ПРОМЫШЛЕННОГО СТРОИТЕЛЬСТВА

ОАО ПКТИпромстрой

ТЕХНОЛОГИЧЕСКАЯ КАРТА
НА ЭЛЕКТРОДНЫЙ ПРОГРЕВ
КОНСТРУКЦИЙ ИЗ МОНОЛИТНОГО БЕТОНА

Введено в действие Распоряжением Управления развития Генплана
№ 6 от 07.04.98

Москва - 1997

АННОТАЦИЯ

Технологическая карта на электродный прогрев конструкций из монолитного бетона при отрицательных температурах воздуха разработана ОАО ПКТИпромстрой в соответствии с протоколом семинара-совещания «Современные технологии зимнего бетонирования», утвержденным первым заместителем премьера Правительства Москвы В.И. Ресиным, и техническим заданием на разработку комплекта технологических карт на производство монолитных бетонных работ при отрицательных температурах воздуха, выданным Управлением развития генплана г. Москвы. Карта содержит организационно-технологические и технические решения по электродному прогреву конструкций из монолитного бетона, применение которых должно способствовать ускорению работ, снижению затрат труда и повышению качества возводимых конструкций в зимних условиях. В технологической карте приведены область применения, организация и технология выполнения работ, требование к качеству и приемке работ, калькуляция затрат труда, график производства работ, потребность в материально-технических ресурсах, решения по технике безопасности и технико-экономические показатели. Исходные данные и конструктивные решения, применительно к которым разработана карта, приняты с учетом требований СНиП, а также условий и особенностей, характерных для строительства в г. Москве. Технологическая карта предназначена для инженерно-технических работников строительных и проектных организаций, а также производителей работ, мастеров и бригадиров, связанных с производством бетонных работ.

Технологическую карту разработали:

Ю.А. Ярымов - гл. инженер проекта, руководитель работы, И.Ю. Томова - ответственный исполнитель, А.Д. Мягков, к.т.н. - ответственный исполнитель от ЦНИИОМТП, В.Н. Холопов, Т.А. Григорьева, Л.В. Ларионова, И.Б. Орловская, Е.С. Нечаева - исполнители. В.В. Шахпаронов, к.т.н. - научно-методическое руководство и редактирование, С.Ю. Едличка, к.т.н. - общее руководство разработкой комплекта технологических карт.

1. ОБЛАСТЬ ПРИМЕНЕНИЯ

1.1. Областью применения электродного прогрева монолитных конструкций в соответствии с «Руководством по электротермообработке бетона» (НИИЖБ, Стройиздат, 1974) являются монолитные бетонные и малоармированные конструкции. Применение этого метода наиболее эффективно для фундаментов, колонн, стен и перегородок, плоских перекрытий, бетонных подготовок под полы. В зависимости от принятой схемы расстановки и подключения электродов электродный прогрев разделяется на сквозной, периферийный и с использованием в качестве электродов арматуры. 1.2. Сущность электродного прогрева заключается в том, что выделение тепла происходит непосредственно в бетоне при пропускании через него электрического тока. 1.3. В технологической карте приводятся: - схемы электродного прогрева; - указания по подготовке конструкций к бетонированию, прогреву и требования к готовности предшествующих работ и строительных конструкций; - схема организации рабочей зоны на время производства работ; - методы и последовательность производства работ, описание установки и подключения электрооборудования и осуществления прогрева бетона; - электрические параметры прогрева; - профессиональный и численно-квалификационный состав рабочих; - график выполнения работ и калькуляция затрат труда; - указание по контролю качества и приемке работ; - решения по технике безопасности; - потребность в необходимых материально-технических ресурсах, электротехническом оборудовании и эксплуатационных материалах; - рекомендации по энергосбережению; - технико-экономические показатели. 1.4. Технологической картой рассматривается электродный сквозной прогрев монолитного фундамента объемом 3,16 м 3 размерами в плане 1800 ´ 1800 мм и высотой 1200 мм с применением металлической опалубки. 1.5. Расчет прогрева произведен с учетом температуры наружного воздуха -20 °С, применения гидро- и теплоизоляции в виде полиэтиленовой пленки и минераловатных матов толщиной 50 мм, металлической опалубки, утепленной минераловатными матами толщиной 50 мм и защищенной фанерой толщиной 3 мм, удельного электрического сопротивления бетонной смеси в начале прогрева 9 Ом × м и прочности бетона к моменту остывания до 0 °С - 50 % R 28 . 1.6. Численно-квалификационный состав рабочих, график работы и калькуляция трудовых затрат, а также потребности в необходимых материально-технических ресурсах и технико-экономические показатели определены исходя из расчета прогрева шести фундаментов, расположенных на одной захватке рабочей зоны. 1.7. Электродный прогрев монолитных конструкций может быть совмещен с другими способами интенсификации твердения бетона, например предварительным прогревом бетонной смеси, использованием различных химических добавок. Применение противоморозных добавок, в состав которых входит мочевина, не допускается из-за разложения мочевины при температуре выше 40 °С. Применение поташа в качестве противоморозной добавки не разрешается вследствие того, что прогретые бетоны с этой добавкой имеют значительный (более 30 %) недобор прочности, характеризуются пониженной морозостойкостью и водонепроницаемостью. 1.8. Привязка настоящей технологической карты к иным конструкциям и условиям производства работ при отрицательных температурах воздуха требует внесения изменений в график работ, калькуляцию трудовых затрат, потребность в материально-технических ресурсах и электрические параметры прогрева.

2. ОРГАНИЗАЦИЯ И ТЕХНОЛОГИЯ ВЫПОЛНЕНИЯ РАБОТ.

2.1. До начала работ по электродному прогреву бетонной смеси выполняют следующие подготовительные операции: - на ровной площадке вблизи захватки устанавливают комплектную трансформаторную подстанцию КТП ТО-80/86; - подключают КТП ТО-80/86 к питающей сети и опробывают на холостом ходу; - изготавливают инвентарные секции шинопроводов (рис. 1); - устанавливают секции шинопроводов у обогреваемых конструкций (рис. 2); - выполняют мероприятия по технике безопасности; - соединяют шинопроводы между собой кабелем марки КРПТ 3 ´ 25; кабелем марки КРПТ 3 ´ 50 подсоединяют их к комплектной подстанции КТП ТО-80/86 или другим трансформаторам, используемых для этих целей; - очищают от мусора, снега, наледи и устанавливают в рабочее положение опалубку и арматуру. 2.2. Сразу же после укладки бетонной смеси в опалубку производят укрытие открытых поверхностей бетона гидроизоляцией (полиэтиленовая пленка) и теплоизоляцией (минераловатные маты толщиной 50 мм). 2.3. Через слои гидро- и теплоизоляции в бетонную смесь забивают электроды согласно схемы (рис. 3). 2.4. В качестве электродов приняты стальные стержни диаметром 6 мм, длиной 1000 мм. 2.5. Электроды устанавливают таким образом, чтобы их концы выступали из бетона на 10 - 20 см. Расстояние между электродами принимают в зависимости от температуры наружного воздуха и принятого напряжения (таблица 1). 2.6. Производят коммутацию электродов между собой и подключают их к секциям шинопроводов (рис. 3). 2.7. Подключают шинопроводы к питающей сети (рис. 4). 2.8. Перед подачей напряжения на электроды проверяют правильность их установки и подключения, качество контактов, расположение температурных скважин или установленных термодатчиков, правильность укладки утеплителя. 2.9. Подают напряжение на электроды в соответствии с электрическими параметрами (таблица 1). 2.10. Сразу после подачи напряжения дежурный электрик повторно проверяет все контакты, устраняет причину короткого замыкания, если оно произошло. 2.11. При необходимости отключения стержневого электрода рядом устанавливают новый и подключают его.

Электрические параметры электродного прогрева

Таблица 1

Температура наружного воздуха, °С

Напряжение питания, В

Расстояние между электродами, см

Удельная мощность, кВт/м 3

2.12. Через каждые два часа во время изотермического прогрева замеряют температуру бетона. Для замеров температуры устраивают специальные скважины (рис. 5, 6). 2.13. Прогрев бетонной смеси осуществляют в соответствии с нижеприведенным графиком при скорости подъема температуры -6 °С/час. Во время разогрева температуры бетона контролируется не реже чем через 1 час.

2.14. В период подъема температуры, на стадии изотермического прогрева, а также после каждого переключения напряжения необходимо следить за показаниями измерительных приборов, состоянием контактов и отпаек. 2.15. Скорость разогрева бетона регулируется повышением или понижением напряжения на низкой стороне трансформатора. 2.16. При изменении температуры наружного воздуха в процессе прогрева выше или ниже расчетной соответственно понижают или повышают напряжение на низкой стороне трансформатора. 2.17. Прогрев осуществляется на пониженном напряжении 55 - 95 В. 2.18. Набор прочности бетона при различных температурах его выдерживания определяется графиком (рис. 7). Пример определения прочности по графику приведен на рис. 8. 2.19. Скорость остывания бетона по окончании тепловой обработки для конструкций с модулем поверхности Мп = 5 - 10 и Мп > 10 - не более соответственно 5 °С и 10 °С в час. Температуру наружного воздуха замеряют один-два раза в сутки, результаты замеров фиксируются в журнале. 2.20. Не реже двух раз в смену, а в первые три часа с начала прогрева бетона через каждый час, измеряют силу тока и напряжение в питающей цепи. Визуально проверяют отсутствие искрения в местах электрических соединений. 2.21. Прочность бетона обычно проверяют по фактическому температурному режиму. После распалубливания прочность бетона, имеющего положительную температуру, рекомендуется определять с помощью молотка конструкции НИИМосстроя, ультразвуковым способом или высверливанием и испытанием кернов. 2.22. Теплоизоляция и опалубка могут быть сняты не ранее того момента, когда температура бетона в наружных слоях конструкции достигает плюс 5 °С и не позже, чем слои остынут до 0. Не допускается примерзания опалубки гидро- и теплоизоляции к бетону. 2.23. Для предотвращения появления трещин в конструкциях перепад температур между открытой поверхностью бетона и наружным воздухом не должен превышать: а) 20 °С для монолитных конструкций с Мп < 5; б) 30 °С для монолитных конструкций с Мп > 5. В случае невозможности соблюдения указанных условий поверхность бетона после распалубливания укрывают брезентом, толью, щитами и т.д. 2.24. Подготовку оснований и укладку бетонной смеси в конструкцию при отрицательных температурах воздуха производят с учетом следующих требований: состояние оснований, на которые укладывают бетонную смесь, а также способ укладки должны исключать возможность деформации основания и замерзания бетона в контакте с основанием до приобретения им требуемой прочности; снимать наледь с опалубки арматуры с помощью пара или горячей воды не допускается. При температуре воздуха ниже -10 °С арматуру диаметром более 25 мм, а также арматуру прокатных профилей и крупные металлические закладные детали следует отогревать до положительной температуры. Все выступающие закладные части и выпуски должны быть утеплены; укладку бетонной смеси производят непрерывно, без перевалок, средствами, обеспечивающими минимальное охлаждение смеси при ее подаче; температура бетонной смеси, уложенной в опалубку, должна быть не ниже +5 °С. 2.25. Электродный прогрев бетона фундаментов выполняет звено из 3-х человек (табл. 2).

Распределение операций по исполнителям

Таблица 2

2.26. Прогрев монолитных фундаментов осуществляется в следующей последовательности: бетонщик заготавливает из стали диаметром 6 мм электроды необходимой длины и в нужном количестве; электромонтер V р. производит разделку концов жил кабеля, подсоединяет его к трансформаторной подстанции КТП ТО-80/86; электромонтер III р. расставляет инвентарные секции шинопроводов вдоль захватки, соединяет их между собой; электромонтер V р. подсоединяет секции шинопроводов к трансформаторной подстанции, производит заземление и опробывает работу на холостом ходу. После укладки бетонной смеси в опалубку бетонщик укрывает верхние поверхности конструкции гидро- и теплоизоляцией; электромонтеры V и III р. расставляют электроды в конструкцию согласно выбранной схемы, производят коммутацию электродов между собой и подключают их к секциям шинопровода. Подают напряжение на электроды. Рекомендации по энергосбережению. В целях энергосбережения при электродном прогреве монолитных конструкций рекомендуется: - при определении средств и продолжительности транспортирования бетонной смеси не допускать возможности охлаждения ее более чем установлено технологическим расчетом, нарушения однородности и снижения заданной подвижности на месте укладки; - применять бетонные смеси более высокой относительной прочности при малой продолжительности прогрева (портландцемент, быстротвердеющий портландцемент); - использовать химические добавки с целью сокращения продолжительности термообработки, улучшения электропроводности бетонных смесей и получения повышенной прочности, приобретаемой бетоном сразу после прогрева; - применять максимально допустимую температуру термообработки бетона, с учетом нарастания прочности бетона при остывании; - следить за качеством и плотностью соединений контактов; - не допускать намокания теплоизоляционных слоев; - надежно производить теплоизоляцию поверхности бетона и опалубки, подвергающихся охлаждению; - соблюдать режим электрообработки.

3. ТРЕБОВАНИЯ К КАЧЕСТВУ И ПРИЕМКЕ РАБОТ

3.1. Контроль качества электродного прогрева монолитной конструкции при отрицательных температурах воздуха производят в соответствии с требованиями СНиП 3.01.01-85* «Организация строительного производства», СНиП III-4-80* «Техника безопасности в строительстве» и СНиП 3.03.01-87 «Несущие и ограждающие конструкции». 3.2. Производственный контроль качества электродного прогрева осуществляют прорабы и мастера, с участием специалистов энергетических служб строительных организаций. 3.3. Производственный контроль включает входной контроль электротехнического оборудования, эксплуатационных материалов и бетонной смеси, операционный контроль отдельных производственных операций и приемочный контроль требуемого качества монолитной конструкции. 3.4. При входном контроле электротехнического оборудования, эксплуатационных материалов и бетонной смеси проверяют внешним осмотром их соответствие нормативным и проектным требованиям, а также наличие и содержание паспортов, сертификатов и других сопроводительных документов. При операционном контроле проверяют соблюдение состава подготовительных операций, технологии наладки электрообогревающего оборудования и устройств, укладки бетона в опалубку бетонируемой конструкции в соответствии с требованиями СНиП, процесс электродного прогрева, температуру, силу тока и напряжение в соответствии с расчетными данными. При приемочном контроле проверяют качество монолитной конструкции в результате электродного прогрева: Результаты операционного контроля фиксируются в журнале работ. Основными документами при операционном контроле является настоящая технологическая карта и указанные в карте нормативные документы, перечни операций контролируемых производителем работ (мастером), данные о составе, сроках и способах контроля, требуемые прочностные показатели фундамента в результате прогрева (табл. 3). 3.5. Контроль температуры прогреваемого бетона следует производить техническими термометрами или дистанционно с помощью термодатчиков, устанавливаемых в скважину. Число точек измерения температуры устанавливают в среднем из расчета не менее одной точки на каждые 3 м 3 бетона, 6 м длины конструкции, 50 м 2 площади перекрытия, 40 м 2 площади подготовки полов и т.д. Температуру бетона проверяют не реже чем через 2 часа. Не реже двух раз в смену, а в первые три часа с начала прогрева бетона через каждый час, измеряют силу тока и напряжение в питающей цепи. В местах соединения проводов не должно быть искрения. 3.6. Скорость подъема температуры при тепловой обработке бетона не выше 6 °С/ч; - скорость остывания бетона по окончании тепловой обработки для конструкций с модулем 5 - 10 - 5 °С/ч свыше 10 - 10 °С/ч 3.7. Контроль прочности бетона осуществляют по температуре бетона в процессе выдерживания. Прочность прогретого бетона, имеющего положительную температуру, определяют с помощью молотка НИИМосстроя, ультразвуковым способом либо высверливанием кернов и испытанием.

СОСТАВ И СОДЕРЖАНИЕ ПРОИЗВОДСТВЕННОГО КОНТРОЛЯ КАЧЕСТВА

Таблица 3

Кто контролирует

Прораб или мастер

Операции, подлежащие контролю

Операции при входном контроле

Подготовительные операции

Операции по устройству фундамента и прогреву бетона Операции при приемочном контроле
Состав контроля проверка изоляции проводов и работоспособность коммутационной аппаратуры, трансформаторов и др. электрооборудования, используемого в работе устройство защитного ограждения и световой сигнализации на участке работ очистка основания опалубки, арматуры от снега, наледи. Установка стержневых электродов. Утепление конструкции укладка бетона в конструкцию монолитного фундамента контроль величины силы тока и напряжения питающей цепи контроль температуры бетона контроль прочности бетона соответствие готового монолитного фундамента требованиям проекта
Методы контроля

визуально-инструментальная проверка

визуальная и по приборам

визуально-инструментальная
Время контроля

до начала бетонирования

до и после бетонирования в процессе электрообогрева бетона после электрообогрева
Кто привлекается к контролю энергетик строительной организации мастер, прораб электромонтеры и лаборатория лаборатория, технадзор

4. КАЛЬКУЛЯЦИЯ ЗАТРАТ ТРУДА

Калькуляция затрат труда составлена на электродный прогрев шести фундаментов с общим объемом бетона 19 м 3 .

Таблица 4

Обоснование

Наименование работ

Объем работ

Норма времени, чел.-час

Затраты труда чел.-час

Состав звена

ЕНиР 1987 § Е23-6-2 п. 35 Установка трансформаторной подстанции в зоне прогрева Электромонтеры V р. – 1 чел. III р. - l чел.
ЕНиР 1987 § Е1-19 п. 2 «а» Переноска и установка на место инвентарных секций шинопровода при массе секций 10 кг
Е22-1-40 п. 1 «а» Заготовка электродов

10 перерезов

Бетонщик III р. - 1 чел.
Опытные данные ЦНИИОМТП Установка защитного ограждения Бетонщик III р. - 1 чел. электромонтер III р. - 1 чел.
Е4-1-50 п. 2 Установка магистрали и присоединении к ней электродов, присоединение трансформатор ной подстанции, укладка электродов в тело бетона. Снятие подводящих проводов магистрали после прогрева

1 м 3 прогретого бетона

Электромонтер V р. - 1 чел. III р. - 1 чел.
ЕНиР 1987 § Е23-4-14 табл. 3 п. 2 Проверка состояния кабеля мегометром Электромонтер V р. - 1 чел.
Тарифно-квалификационный справочник Электропрогрев бетонной смеси Электромонтер III р. - 1 чел.
ЕНиР 1987 Е4-1-54; п. 10 Устройство гидро- и теплоизоляции Бетонщик III р. - 1 чел.
ЕНиР 1987 Е4-1-54 п. 12 Снятие гидро- и теплоизоляции Бетонщик III р. - 1 чел.
Е22-1-40 п. 1 «а» Срезка электродов

10 перерезов

Бетонщик III р. - 1 чел.
ЕНиР 1987 § Е23-6-16 п. 3 К = 0,3 Отсоединение секций шинопроводов

100 концов

Электромонтер III р. - 1 чел.

5. ГРАФИК ПРОИЗВОДСТВА РАБОТ


6. ПОТРЕБНОСТЬ В МАТЕРИАЛЬНО-ТЕХНИЧЕСКИХ РЕСУРСАХ

Таблица 5

Наименование

Марка (ГОСТ, ТУ)

Техническая характеристика

Комплектная трансформаторная подстанция для обогрева бетона КТП ТО-80/86 Мощность - 80 кВт Макс. ток 490 А Напряжение 55, 65, 75, 85, 95 В
Токоизмерительные клещи
Инвентарные секции шинопроводов Длина секции - 1,5 м, масса 10 кг
Кабель КРПТ - 3 ´ 25 + 1 ´ 16 ГОСТ 13497-68
КРПТ - 3 ´ 50
КРПТ 3 ´ 25
КРПТ - 3 ´ 16
АПР - 4 мм 2
Сталь арматурная - электроды ГОСТ 5781-82 Æ 6 мм
Инвентарное сетчатое ограждение h = 1,5 м
Изоляционная лента
Полиэтиленовая пленка Тс 0,1 ´ 1400 ГОСТ 10354-82 толщина d = 0,1 мм ширина В = 1,4 м
Диэлектрические ТУ 38-106359-79
перчатки
галоши
коврик
Противопожарный щит С углекислотными огнетушителями
Прожектор Мощность - 1000 Вт
Минеральная вата ГОСТ 9573-82 Марка - 50

7. РЕШЕНИЯ ПО ТЕХНИКЕ БЕЗОПАСНОСТИ

7.1 При эксплуатации стержневых электродов из арматурной стали и силового питающего электрооборудования помимо общих требований правил безопасного производства работ согласно СНиП III-4-80* «Техника безопасности в строительстве» следует руководствоваться «Правилами технической эксплуатации и безопасности электроустановок промышленных предприятий». 7.2 Электробезопасность на строительной площадке, участках производства работ и рабочих местах необходимо обеспечивать в соответствии с требованиями ГОСТ 12.1.013-78 «Строительство. Электробезопасность. Общие требования». Лица занятые на строительно-монтажных работах, должны быть обучены безопасным способам ведения работ, а также уметь оказать первую доврачебную помощь при электротравме. 7.3 В строительно-монтажной организации должен быть инженерно-технический работник, ответственный за безопасную эксплуатацию электрохозяйства организации, имеющего квалификационную группу по технике безопасности не ниже IV . 7.4 При устройстве электрических сетей необходимо предусматривать возможность отключения всех электроустановок в пределах отдельных участков и объектов производства работ. 7.5 Работы, связанные с присоединением (отсоединением) проводов, должны выполняться специалистами по электротехнике, имеющими соответствующую квалификационную группу по технике безопасности. 7.6 В течение всего периода эксплуатации электроустановок на строительных площадках должны быть установлены знаки безопасности по ГОСТу 12.4.026.76 7.7 Технический персонал, проводящий прогрев бетона, должен пройти обучение и проверку знаний квалификационной комиссией по технике безопасности с получением соответствующих удостоверений. Дежурные электромонтеры должны иметь квалификацию не ниже III группы. 7.8 Рабочих, занятых на прогреве бетона, снабжают резиновыми сапогами или диэлектрическими галошами, а электромонтеров, кроме того, резиновыми перчатками. Подключение нагревательных проводов, замеры температуры техническими термометрами производят при отключенном напряжении. 7.9 Зона, где производится прогрев бетона, должна быть ограждена. На видном месте помещаются предупредительные плакаты, правила по технике безопасности, противопожарные средства, в ночное время ограждение зоны должно быть освещено, для чего на нем устанавливаются красные лампочки, автоматически загорающиеся при подаче напряжения в линию прогрева. 7.10 Все металлические токоведущие части электрооборудования и арматуру следует надежно заземлить, присоединив к ним нулевой провод питающего кабеля. При использовании защитного контура заземления перед включением напряжения необходимо проверить сопротивление контура, которое должно быть не более 4 Ом. Около трансформаторов, рубильников и распределительных щитков устанавливают настилы, покрытые резиновыми ковриками. 7.11 Проверку сопротивления изоляции проводов с помощью мегомметра производит персонал, квалификационная группа по технике безопасности которого не ниже III . Концы проводов, которые могут оказаться под напряжением, необходимо изолировать или оградить. Участок прогрева бетона должен постоянно находиться под надзором дежурного электрика. 7.12 Запрещается: подключать под напряжение провода с механическими повреждениями изоляции, а также ненадежно выполненными коммутационными соединениями; проводить работы по прогреву в сырую погоду, во время оттепели, без ограждения зоны прогрева; работать при обнаруженной неисправности электропроводки; прокладывать провода непосредственно по грунту; размещать легковоспламеняющиеся материалы вблизи установок для прогрева бетонов, доступ посторонних лиц в зону прогрева.

8. ТЕХНИКО-ЭКОНОМИЧЕСКИЕ ПОКАЗАТЕЛИ

Рис. 1. Инвентарная секция шинопроводов (крайняя секция):

1 - разъем; 2 - деревянная стойка; 3 - болты; 4 - токопроводы (полоса 3 ´ 40 мм)

Рис. 2. Схема организации рабочей зоны

1 - комплектная трансформаторная подстанция КТП ТО-80/86; 2 - прожектор; 3 - секции шинопровода; 4 - кабель КРПТ 3 ´ 2,5; 5 - кабель КРПТ 3 ´ 50; 6 - диэлектрический коврик; 7 - инвентарные ограждение; 8 - сигнальная лампа красного цвета

Рис. 3. Схема подключения электродов к шинопроводам

Рис. 4. Схема подключения шинопроводов к питающей сети

Рис. 5. Установка термодатчика в обогреваемой конструкции

1 - монолитная конструкция; 2 - утеплитель;

3 - пенал из тонкостенной стальной трубки;

4 - индустриальное масло; 5 - термодатчик

Примечание: 1. Во время разогрева и изотермического прогрева температура бетона замеряется по скважинам № 1 и 2, во время остывания по скважинам № 1, 2, 3. 2. Электроды условно не показаны.

Рис. 6. Схема расстановки температурных скважин

Рис. 7. Кривые набора прочности бетоном при различных температурах его выдерживания:

а, в - для бетона класса В25 на портландцементе активностью 400 - 500;

б, г - для бетона класса В25 на шлакопортландцементе активностью 300 - 400

Пример: Определить прочность бетона в конструкции с Мп = 4 на портландцементе марки 400 при скорости подъема температуры 10 °С в час, температуре изотермического прогрева 70 °С, его продолжительности 12 ч и остывании со скоростью 5 °С в час до конечной температуры 8 °С. Решение: 1. Определить величину относительной прочности за период подъема температуры продолжительность подъема температуры при средней температуре Для этого из точки «А» (см. график) проводим перпендикуляр до пересечения с кривой прочности при 40 °С (точка «Б»). Величина прочности за время подъема температуры определяется проекцией точки «Б» на ось ординат (точка «В») и составляет 15 %. Определяем прирост относительной прочности при изотермическом прогреве за 12 часов как проекцию участка (точки «Л» и «К») кривой прочности при 70 °С (отрезок «ВЗ»), что соответствует 46 % R 28 . Определяем прирост прочности бетона за 12 часов остывания по кривой прочности при 38 °С как проекцию участка «ЖГ» на ось ординат. Отрезок «ЗИ» соответствует 9 % R 28 . За весь цикл термообработки бетон приобретает прочность 15 + 46 + 9 = 70 % R 28 . Для каждого конкретного состава бетона строительной лабораторией должен быть уточнен на опытных образцах-кубах оптимальный режим выдерживания.

Рис. 8. Пример определения прочности бетона по графику

ЛИТЕРАТУРА

1. СНиП 3.01.01-85* «Организация строительного производства». 2. СНиП 3.03.01-87 «Несущие и ограждающие конструкции». 3. СНиП III-4-80* «Техника безопасности в строительстве». 4. Пособие по электрообогреву бетона монолитных конструкций (к СНиП III -15-76) НИИЖБ Госстроя СССР, Москва, Стройиздат, 1985 г. 5. Руководство по электротермообработке бетона. НИИЖБ Госстроя СССР, Москва, Стройиздат, 1974 г. 6. Руководство по производству бетонных работ в зимних условиях, районах Дальнего Востока, Сибири и Крайнего Севера. ЦНИИОМТП Госстроя СССР, Москва, Стройиздат, 1982 г. 7. Временные указания по индукционному прогреву железобетонных конструкций (ВСН-22-68). Техническое управление Главмосстроя, Москва, 1969 г.