Теорема Пифагора: история вопроса, доказательства, примеры практического применения. Интересные факты о теореме Пифагора: узнаем новое об известной теореме (15 фото) Почему пифагоровы штаны во все стороны равны

» заслуженного профессора математики Уорикского университета, известного популяризатора науки Иэна Стюарта, посвященной роли чисел в истории человечества и актуальности их изучения в наше время.

Пифагорова гипотенуза

Пифагоровы треугольники имеют прямой угол и целочисленные стороны. У простейшего из них самая длинная сторона имеет длину 5, остальные - 3 и 4. Всего существует 5 правильных многогранников. Уравнение пятой степени невозможно решить при помощи корней пятой степени - или любых других корней. Решетки на плоскости и в трехмерном пространстве не имеют пятилепестковой симметрии вращения, поэтому такие симметрии отсутствуют и в кристаллах. Однако они могут быть у решеток в четырехмерном пространстве и в занятных структурах, известных как квазикристаллы.

Гипотенуза самой маленькой пифагоровой тройки

Теорема Пифагора гласит, что самая длинная сторона прямоугольного треугольника (пресловутая гипотенуза) соотносится с двумя другими сторонами этого треугольника очень просто и красиво: квадрат гипотенузы равен сумме квадратов двух других сторон.

Традиционно мы называем эту теорему именем Пифагора, но на самом деле история ее достаточно туманна. Глиняные таблички позволяют предположить, что древние вавилоняне знали теорему Пифагора задолго до самого Пифагора; славу первооткрывателя принес ему математический культ пифагорейцев, сторонники которого верили, что Вселенная основана на числовых закономерностях. Древние авторы приписывали пифагорейцам - а значит, и Пифагору - самые разные математические теоремы, но на самом деле мы представления не имеем о том, какой математикой занимался сам Пифагор. Мы даже не знаем, могли ли пифагорейцы доказать теорему Пифагора или просто верили в то, что она верна. Или, что наиболее вероятно, у них были убедительные данные о ее истинности, которых тем не менее не хватило бы на то, что мы считаем доказательством сегодня.

Доказательства Пифагора

Первое известное доказательство теоремы Пифагора мы находим в «Началах» Евклида. Это достаточно сложное доказательство с использованием чертежа, в котором викторианские школьники сразу узнали бы «пифагоровы штаны»; чертеж и правда напоминает сохнущие на веревке подштанники. Известны буквально сотни других доказательств, большинство из которых делает доказываемое утверждение более очевидным.


// Рис. 33. Пифагоровы штаны

Одно из простейших доказательств - это своего рода математический пазл. Возьмите любой прямоугольный треугольник, сделайте четыре его копии и соберите их внутри квадрата. При одной укладке мы видим квадрат на гипотенузе; при другой - квадраты на двух других сторонах треугольника. При этом ясно, что площади в том и другом случае равны.


// Рис. 34. Слева: квадрат на гипотенузе (плюс четыре треугольника). Справа: сумма квадратов на двух других сторонах (плюс те же четыре треугольника). А теперь исключите треугольники

Рассечение Перигаля - еще одно доказательство-пазл.


// Рис. 35. Рассечение Перигаля

Существует также доказательство теоремы с использованием укладки квадратов на плоскости. Возможно, именно так пифагорейцы или их неизвестные предшественники открыли эту теорему. Если взглянуть на то, как косой квадрат перекрывает два других квадрата, то можно увидеть, как разрезать большой квадрат на куски, а затем сложить из них два меньших квадрата. Можно увидеть также прямоугольные треугольники, стороны которых дают размеры трех задействованных квадратов.


// Рис. 36. Доказательство мощением

Есть интересные доказательства с использованием подобных треугольников в тригонометрии. Известно по крайней мере пятьдесят различных доказательств.

Пифагоровы тройки

В теории чисел теорема Пифагора стала источником плодотворной идеи: найти целочисленные решения алгебраических уравнений. Пифагорова тройка - это набор целых чисел a, b и c, таких что

Геометрически такая тройка определяет прямоугольный треугольник с целочисленными сторонами.

Самая маленькая гипотенуза пифагоровой тройки равна 5.

Другие две стороны этого треугольника равны 3 и 4. Здесь

32 + 42 = 9 + 16 = 25 = 52.

Следующая по величине гипотенуза равна 10, потому что

62 + 82 = 36 + 64 = 100 = 102.

Однако это, по существу, тот же треугольник с удвоенными сторонами. Следующая по величине и по-настоящему другая гипотенуза равна 13, для нее

52 + 122 = 25 + 144 = 169 = 132.

Евклид знал, что существует бесконечное число различных вариантов пифагоровых троек, и дал то, что можно назвать формулой для нахождения их всех. Позже Диофант Александрийский предложил простой рецепт, в основном совпадающий с евклидовым.

Возьмите любые два натуральных числа и вычислите:

их удвоенное произведение;

разность их квадратов;

сумму их квадратов.

Три получившихся числа будут сторонами пифагорова треугольника.

Возьмем, к примеру, числа 2 и 1. Вычислим:

удвоенное произведение: 2 × 2 × 1 = 4;

разность квадратов: 22 - 12 = 3;

сумма квадратов: 22 + 12 = 5,

и мы получили знаменитый треугольник 3–4–5. Если взять вместо этого числа 3 и 2, получим:

удвоенное произведение: 2 × 3 × 2 = 12;

разность квадратов: 32 - 22 = 5;

сумму квадратов: 32 + 22 = 13,

и получаем следующий по известности треугольник 5 - 12 - 13. Попробуем взять числа 42 и 23 и получим:

удвоенное произведение: 2 × 42 × 23 = 1932;

разность квадратов: 422 - 232 = 1235;

сумма квадратов: 422 + 232 = 2293,

никто никогда не слышал о треугольнике 1235–1932–2293.

Но эти числа тоже работают:

12352 + 19322 = 1525225 + 3732624 = 5257849 = 22932.

В диофантовом правиле есть еще одна особенность, на которую уже намекали: получив три числа, мы можем взять еще одно произвольное число и все их на него умножить. Таким образом треугольник 3–4–5 можно превратить в треугольник 6–8–10, умножив все стороны на 2, или в треугольник 15–20–25, умножив все на 5.

Если перейти на язык алгебры, правило приобретает следующий вид: пусть u, v и k - натуральные числа. Тогда прямоугольный треугольник со сторонами

2kuv и k (u2 - v2) имеет гипотенузу

Существуют и другие способы изложения основной идеи, но все они сводятся к описанному выше. Этот метод позволяет получить все пифагоровы тройки.

Правильные многогранники

Существует ровным счетом пять правильных многогранников. Правильный многогранник (или полиэдр) - это объемная фигура с конечным числом плоских граней. Грани сходятся друг с другом на линиях, именуемых ребрами; ребра встречаются в точках, именуемых вершинами.

Кульминацией евклидовых «Начал» является доказательство того, что может быть только пять правильных многогранников, то есть многогранников, у которых каждая грань представляет собой правильный многоугольник (равные стороны, равные углы), все грани идентичны и все вершины окружены равным числом одинаково расположенных граней. Вот пять правильных многогранников:

тетраэдр с четырьмя треугольными гранями, четырьмя вершинами и шестью ребрами;

куб, или гексаэдр, с 6 квадратными гранями, 8 вершинами и 12 ребрами;

октаэдр с 8 треугольными гранями, 6 вершинами и 12 ребрами;

додекаэдр с 12 пятиугольными гранями, 20 вершинами и 30 ребрами;

икосаэдр с 20 треугольными гранями, 12 вершинами и 30 ребрами.


// Рис. 37. Пять правильных многогранников

Правильные многогранники можно найти и в природе. В 1904 г. Эрнст Геккель опубликовал рисунки крохотных организмов, известных как радиолярии; многие из них по форме напоминают те самые пять правильных многогранников. Возможно, правда, он немного подправил природу, и рисунки не отражают полностью форму конкретных живых существ. Первые три структуры наблюдаются также в кристаллах. Додекаэдра и икосаэдра в кристаллах вы не найдете, хотя неправильные додекаэдры и икосаэдры там иногда попадаются. Настоящие додекаэдры могут возникать в виде квазикристаллов, которые во всем похожи на кристаллы, за исключением того, что их атомы не образуют периодической решетки.


// Рис. 38. Рисунки Геккеля: радиолярии в форме правильных многогранников


// Рис. 39. Развертки правильных многогранников

Бывает интересно делать модели правильных многогранников из бумаги, вырезав предварительно набор соединенных между собой граней - это называется разверткой многогранника; развертку складывают по ребрам и склеивают соответствующие ребра между собой. Полезно добавить к одному из ребер каждой такой пары дополнительную площадку для клея, как показано на рис. 39. Если такой площадки нет, можно использовать липкую ленту.

Уравнение пятой степени

Не существует алгебраической формулы для решения уравнений 5-й степени.

В общем виде уравнение пятой степени выглядит так:

ax5 + bx4 + cx3 + dx2 + ex + f = 0.

Проблема в том, чтобы найти формулу для решений такого уравнения (у него может быть до пяти решений). Опыт обращения с квадратными и кубическими уравнениями, а также с уравнениями четвертой степени позволяет предположить, что такая формула должна существовать и для уравнений пятой степени, причем в ней, по идее, должны фигурировать корни пятой, третьей и второй степени. Опять же, можно смело предположить, что такая формула, если она существует, окажется очень и очень сложной.

Это предположение в конечном итоге оказалось ошибочным. В самом деле, никакой такой формулы не существует; по крайней мере не существует формулы, состоящей из коэффициентов a, b, c, d, e и f, составленной с использованием сложения, вычитания, умножения и деления, а также извлечения корней. Таким образом, в числе 5 есть что-то совершенно особенное. Причины такого необычного поведения пятерки весьма глубоки, и потребовалось немало времени, чтобы в них разобраться.

Первым признаком проблемы стало то, что, как бы математики ни старались отыскать такую формулу, какими бы умными они ни были, они неизменно терпели неудачу. Некоторое время все считали, что причины кроются в неимоверной сложности формулы. Считалось, что никто просто не может как следует разобраться в этой алгебре. Однако со временем некоторые математики начали сомневаться в том, что такая формула вообще существует, а в 1823 г. Нильс Хендрик Абель сумел доказать обратное. Такой формулы не существует. Вскоре после этого Эварист Галуа нашел способ определить, решаемо ли уравнение той или иной степени - 5-й, 6-й, 7-й, вообще любой - с использованием такого рода формулы.

Вывод из всего этого прост: число 5 особенное. Можно решать алгебраические уравнения (при помощи корней n-й степени для различных значений n) для степеней 1, 2, 3 и 4, но не для 5-й степени. Здесь очевидная закономерность заканчивается.

Никого не удивляет, что уравнения степеней больше 5 ведут себя еще хуже; в частности, с ними связана такая же трудность: нет общих формул для их решения. Это не означает, что уравнения не имеют решений; это не означает также, что невозможно найти очень точные численные значения этих решений. Все дело в ограниченности традиционных инструментов алгебры. Это напоминает невозможность трисекции угла при помощи линейки и циркуля. Ответ существует, но перечисленные методы недостаточны и не позволяют определить, каков он.

Кристаллографическое ограничение

Кристаллы в двух и трех измерениях не имеют 5-лучевой симметрии вращения.

Атомы в кристалле образуют решетку, то есть структуру, которая периодически повторяется в нескольких независимых направлениях. К примеру, рисунок на обоях повторяется по длине рулона; кроме того, он обычно повторяется и в горизонтальном направлении, иногда со сдвигом от одного куска обоев к следующему. По существу, обои - это двумерный кристалл.

Существует 17 разновидностей обойных рисунков на плоскости (см. главу 17). Они различаются по типам симметрии, то есть по способам сдвинуть жестко рисунок таким образом, чтобы он точно лег сам на себя в первоначальном положении. К типам симметрии относятся, в частности, различные варианты симметрии вращения, где рисунок следует повернуть на определенный угол вокруг определенной точки - центра симметрии.

Порядок симметрии вращения - это то, сколько раз можно повернуть тело до полного круга так, чтобы все детали рисунка вернулись на первоначальные позиции. К примеру, поворот на 90° - это симметрия вращения 4-го порядка*. Список возможных типов симметрии вращения в кристаллической решетке вновь указывает на необычность числа 5: его там нет. Существуют варианты с симметрией вращения 2, 3, 4 и 6-го порядков, но ни один обойный рисунок не имеет симметрии вращения 5-го порядка. Симметрии вращения порядка больше 6 в кристаллах тоже не бывает, но первое нарушение последовательности происходит все же на числе 5.

То же происходит с кристаллографическими системами в трехмерном пространстве. Здесь решетка повторяет себя по трем независимым направлениям. Существует 219 различных типов симметрии, или 230, если считать зеркальное отражение рисунка отдельным его вариантом - притом, что в данном случае нет зеркальной симметрии. Опять же, наблюдаются симметрии вращения порядков 2, 3, 4 и 6, но не 5. Этот факт получил название кристаллографического ограничения.

В четырехмерном пространстве решетки с симметрией 5-го порядка существуют; вообще, для решеток достаточно высокой размерности возможен любой наперед заданный порядок симметрии вращения.


// Рис. 40. Кристаллическая решетка поваренной соли. Темные шарики изображают атомы натрия, светлые - атомы хлора

Квазикристаллы

Хотя симметрия вращения 5-го порядка в двумерных и трехмерных решетках невозможна, она может существовать в чуть менее регулярных структурах, известных как квазикристаллы. Воспользовавшись набросками Кеплера, Роджер Пенроуз открыл плоские системы с более общим типом пятикратной симметрии. Они получили название квазикристаллов.

Квазикристаллы существуют в природе. В 1984 г. Даниэль Шехтман открыл, что сплав алюминия и марганца может образовывать квазикристаллы; первоначально кристаллографы встретили его сообщение с некоторым скепсисом, но позже открытие было подтверждено, и в 2011 г. Шехтман был удостоен Нобелевской премии по химии. В 2009 г. команда ученых под руководством Луки Бинди обнаружила квазикристаллы в минерале с российского Корякского нагорья - соединении алюминия, меди и железа. Сегодня этот минерал называется икосаэдрит. Измерив при помощи масс-спектрометра содержание в минерале разных изотопов кислорода, ученые показали, что этот минерал возник не на Земле. Он сформировался около 4,5 млрд лет назад, в то время, когда Солнечная система только зарождалась, и провел большую часть времени в поясе астероидов, обращаясь вокруг Солнца, пока какое-то возмущение не изменило его орбиту и не привело его в конце концов на Землю.


// Рис. 41. Слева: одна из двух квазикристаллических решеток с точной пятикратной симметрией. Справа: атомная модель икосаэдрического алюминиево-палладиево-марганцевого квазикристалла

Теорема Пифагора всем известна со школьной поры. Выдающийся математик доказал великую гипотезу, которой в настоящее время пользуются многие люди. Звучит правило так: квадрат длины гипотенузы прямоугольного треугольника равен сумме квадратов катетов. За многие десятилетия ни один математик не сумел переспорить данное правило. Ведь Пифагор долго шел к своей цели, чтобы в результате чертежи имели место в повседневной жизни.

  1. Небольшой стих к данной теореме, который придумали вскоре после доказательства, напрямую доказывает свойства гипотезы: «Пифагоровы штаны во все стороны равны» . Это двустрочье отложилось в памяти у многих людей – по сей день стихотворение вспоминают при вычислениях.
  2. Данная теорема получила название «Пифагоровы штаны» вследствие того, что при черчении по середине получался прямоугольный треугольник, по бокам которого располагались квадраты . С виду данное черчение напоминало штаны – отсюда и название гипотезы.
  3. Пифагор гордился разработанной теоремой, ведь данная гипотеза отличается от ею подобных максимальным количеством доказательств . Важно: уравнение было занесено в книгу рекордов Гиннесса вследствие 370 правдивых доказательств.
  4. Гипотезу доказывало огромное количество математиков и профессоров из разных стран многими способами . Английский математик Джонс вскоре оглашения гипотезы доказал ее при помощи дифференциального уравнения.
  5. В настоящее время никому неизвестно доказательство теоремы самим Пифагором . Факты о доказательствах математика сегодня не известны никому. Считается, что доказательство чертежей Евклидом - это и есть доказательство Пифагора. Однако некоторые ученые спорят с этим утверждением: многие считают, что Евклид самостоятельно доказал теорему, без помощи создателя гипотезы.
  6. Нынешние ученые обнаружили, что великий математик был не первым, кто открыл данную гипотезу . Уравнение было известно еще задолго до открытия Пифагором. Данный математик сумел лишь воссоединить гипотезу.
  7. Пифагор не давал уравнению название «Теорема Пифагора» . Это название закрепилось после «громкого двустрочья». Математик лишь хотел, чтобы его старания и открытия узнал весь мир и пользовался ими.
  8. Мориц Кантор - великий крупнейший математик нашел и разглядел на древнем папирусе записи с чертежами . Вскоре после этого Кантор понял, что данная теорема была известна египтянам еще 2300 лет до нашей эры. Только тогда ею никто не воспользовался и не стал пытаться доказать.
  9. Нынешние ученые считают, что гипотеза была известна еще в 8 веке до нашей эры . Индийские ученые того времени обнаружили приблизительное вычисление гипотенузы треугольника, наделенного прямыми углами. Правда в то время никто не смог доказать наверняка уравнение по приблизительным вычислениям.
  10. Великий математик Бартель Ван дер Варден после доказательства гипотезы заключил важный вывод : «Заслуга греческого математика считается не открытием направления и геометрии, а лишь ее обоснованием. В руках Пифагора были вычислительные формулы, которые основывались на предположениях, неточных вычислениях и смутных представлениях. Однако выдающемуся ученому удалось превратить из в точную науку».
  11. Известный стихотворец сказал, что в день открытия своего чертежа он воздвиг быкам славную жертву . Именно после открытия гипотезы пошли слухи, что жертвоприношение ста быков «пошло странствовать по страницам книг и изданий». Остряки по сей день шутят, что с тех пор все быки боятся нового открытия.
  12. Доказательство того, что не Пифагор придумал стихотворение про штаны, дабы доказать выдвинутые им чертежи: во времена жизни великого математика штанов еще не было . Они были придуманы через несколько десятилетий.
  13. Пекка, Лейбниц и еще несколько ученых пытались доказать ранее известную теорему, однако это никому не удавалось .
  14. Название чертежей «теорема Пифагора» означает «убеждение речью» . Так переводится слово Пифагор, которое взял математик в качестве псевдонима.
  15. Размышления Пифагора о собственном правиле: секрет сущего на земле кроется в цифрах . Ведь математик, опираясь на собственную гипотезу, изучил свойства чисел, выявил четность и нечетность, создал пропорции.

Мы надеемся Вам понравилась подборка с картинками - Интересные факты о теореме Пифагора: узнаем новое об известной теореме (15 фото) онлайн хорошего качества. Оставьте пожалуйста ваше мнение в комментариях! Нам важно каждое мнение.

Шутливое доказательство теоремы Пифагора; также в шутку о мешковатых брюках приятеля.

  • - тройки целых положительных чисел х, у,z, удовлетворяющих уравнению x2+у 2=z2...

    Математическая энциклопедия

  • - тройки таких натуральных чисел, что треугольник, длины сторон к-рого пропорциональны этим числам, является прямоугольным, напр. тройка чисел: 3, 4, 5...

    Естествознание. Энциклопедический словарь

  • - см. Ракета спасательная...

    Морской словарь

  • - тройки натуральных чисел таких, что треугольник, длины сторон которого пропорциональны этим числам, является прямоугольным...

    Большая Советская энциклопедия

  • - mil. Неизм. Выражение, используемое при перечислении или противопоставлении двух фактов, явлений, обстоятельств...

    Учебный фразеологический словарь

  • - Из романа-антиутопии «Скотный двор» английского писателя Джорджа Оруэлла...
  • - Впервые встречается в сатире «Дневник либерала в Петербурге» Михаила Евграфовича Салтыкова-Щедрина, который так образно описал двойственную, трусливую позицию российских либералов - своих...

    Словарь крылатых слов и выражений

  • - Говорится в случае, когда собеседник долго и невнятно пытался что-то сообщить, загромождая основную мысль второстепенными деталями...

    Словарь народной фразеологии

  • - Число пуговиц известно. Почему же хую тесно? - о штанах и мужском половом органе. . Чтобы это доказать, надо снять и показать 1) о теореме Пифагора; 2) о широких штанах...

    Живая речь. Словарь разговорных выражений

  • - Ср. Нет бессмертия души, так нет и добродетели, "значит, все позволено"... Соблазнительная теория подлецам... Хвастунишка, а суть-то вся: с одной стороны, нельзя не признаться, а с другой - нельзя не сознаться...

    Толково-фразеологический словарь Михельсона

  • - Пиѳагоровы штаны иноск. о человѣкѣ даровитомъ. Ср. Это несомнѣнности мудрецъ. Въ древности онъ навѣрное выдумалъ бы пиѳагоровы штаны... Салтыковъ. Пестрыя письма...
  • - Съ одной стороны - съ другой стороны. Ср. Нѣтъ безсмертія души, такъ нѣтъ и добродѣтели, «значитъ, все позволено»... Соблазнительная теорія подлецамъ.....

    Толково-фразеологический словарь Михельсона (ориг. орф.)

  • - Шуточное название теоремы Пифагора, возникшее в силу того, что построенные на сторонах прямоугольника и расходящиеся в разные стороны квадраты напоминают покрой штанов...
  • - С ОДНОЙ СТОРОНЫ… С ДРУГОЙ СТОРОНЫ. Книжн...

    Фразеологический словарь русского литературного языка

  • - См. ЗВАНИЯ -...

    В.И. Даль. Пословицы русского народа

  • - Жарг. шк. Шутл. Пифагор. ...

    Большой словарь русских поговорок

"Пифагоровы штаны во все стороны равны" в книгах

11. Пифагоровы штаны

Из книги Фридл автора Макарова Елена Григорьевна

11. Пифагоровы штаны Моя хорошая девочка!Прежде всего – самая горячая благодарность за Дворжака; он очень интересен, не так уж легко читается, но я ему очень рада. Я тебе напишу подробнее, когда прочту несколько глав.Ты не представляешь, какую радость доставляет мне твой

III «Не все ли места равны?»

Из книги Батюшков автора Сергеева-Клятис Анна Юрьевна

III «Не все ли места равны?» В конце поста, не дождавшись Пасхи, которая в 1815 году приходилась на 18 апреля, Батюшков на Страстной седмице выехал из Петербурга в имение отца Даниловское. Однако до этого произошло еще одно событие, о котором нет упоминаний в письмах Батюшкова,

Пифагоровы штаны

Из книги От добермана до хулигана. Из имен собственных в нарицательные автора Блау Марк Григорьевич

Пифагоровы штаны О том, что «пифагоровы штаны во все стороны равны», знали еще дореволюционные гимназисты, они-то и сочинили эту стихотворную шпаргалку. Да что там гимназисты! Наверное, уже великому Ломоносову, изучавшему геометрию в своей Славяно-греко-латинской

1.16. Обеспечительные меры как со стороны налоговых органов, так и со стороны налогоплательщиков

Из книги Налоговые проверки. Как с достоинством выдержать визит инспекторов автора Семенихин Виталий Викторович

1.16. Обеспечительные меры как со стороны налоговых органов, так и со стороны налогоплательщиков Налогоплательщики редко соглашаются с выводами налоговых органов, сделанными по результатам налоговых проверок. И при этом большинство споров в судах разрешается в пользу

Перед кредитом все равны

Из книги Деньги. Кредит. Банки: конспект лекций автора Шевчук Денис Александрович

Перед кредитом все равны Официальная история неотложного кредитования в Америке ведет отсчет с 1968 года, когда там был принят Закон о потребительском кредите. В частности, он устанавливает справедливые правила предоставления ссуды, верхние пределы ставок, правила

SWOT-анализ (сильные стороны, слабые стороны, возможности, угрозы)

Из книги Треннинг. Настольная книга тренера автора Торн Кей

SWOT-анализ (сильные стороны, слабые стороны, возможности, угрозы) Этот способ - дополнение структуры «мозговому штурму». Разделите лист флип-чарта на четыре части и озаглавьте их: сильные стороны, слабые стороны, возможности, угрозы.Группа может анализировать бизнес,

Не все покупатели равны

Из книги Как работать по четыре часа в неделю автора Феррис Тимоти

Не все покупатели равны Как только вы достигнете третьего этапа и приток средств станет более-менее установившимся, пора оценить состав ваших покупателей и прополоть эту грядку. Все на свете делится на хорошее и плохое: хорошими и плохими бывают еда, фильмы, секс. Вот и

Глава VII «Пифагоровы штаны» - открытие ассиро-вавилонских математиков

Из книги Когда заговорила клинопись автора Матвеев Константин Петрович

Глава VII «Пифагоровы штаны» - открытие ассиро-вавилонских математиков Математика у ассирийцев и вавилонян, так же как и астрономия, была необходима прежде всего в практической жизни - при строительстве домов, дворцов, дорог, составлении календарей, проведении каналов,

«Под маской все чины равны»

Из книги Петербургские арабески автора Аспидов Альберт Павлович

«Под маской все чины равны» Среди новогодних покупок - елочных игрушек и прочего - может оказаться и маска. Надев ее, мы сразу же становимся другими - как в волшебной сказке. А кто не хочет хоть раз в году прикоснуться к волшебству - к его радостным и безобидным сторонам,

Пифагоровы числа

Из книги Большая Советская Энциклопедия (ПИ) автора БСЭ

Все равны, но некоторые равны более других

Из книги Энциклопедический словарь крылатых слов и выражений автора Серов Вадим Васильевич

Все равны, но некоторые равны более других Из романа-антиутопии «Скотный двор» (1945) английского писателя Джорджа Оруэлла (псевдоним Эрика Блэра, 1903-1950). Животные некой фермы однажды свергли своего жестокого хозяина и установили республику, провозгласив принцип: «Все

Участие в переговорах в качестве стороны или ассистента стороны

Из книги Хрестоматия альтернативного разрешения споров автора Коллектив авторов

Участие в переговорах в качестве стороны или ассистента стороны Еще одной из форм переговоров, вышедших из медиации, является участие медиатора совместно со стороной (или без нее) в переговорах в качестве представителя стороны.Такой метод принципиально отличается от

Силы были равны

Из книги Великая война не окончена. Итоги Первой Мировой автора Млечин Леонид Михайлович

Силы были равны Никто не предполагал, что война затянется. Но тщательно разработанные Генштабами планы рухнули в первые же месяцы. Силы противостоящих блоков оказались примерно равными. Расцвет новой боевой техники множил число жертв, но не позволял сокрушить врага и

Все животные равны, но некоторые более равны, чем другие

Из книги Фашизофрения автора Сысоев Геннадий Борисович

Все животные равны, но некоторые более равны, чем другие И наконец, хотелось бы вспомнить людей, которые думают, будто Косово может стать каким-то там прецедентом. Мол, если населению Косова «мировое сообщество» (т.е. США и ЕС) предоставит право самому решить свою судьбу на

Почти равны

Из книги Литературная Газета 6282 (№ 27 2010) автора Литературная Газета

Почти равны Клуб 12 стульев Почти равны ИРОНИЧЕСКАЯ ПРОЗА Смерть зашла к одному бедняку. А тот глуховатый был. Так нормальный, но чуть-чуть глуховатый… И видел плохо. Почти ничего не видел. – Ой, к нам гости! Проходите, пожалуйста. Смерть говорит: – Погоди радоваться,

Римский архитектор Витрувий особо выделял теорему Пифагора «из многочисленных открытий, оказавших услуги развитию человеческой жизни», и призывал относиться к ней с величайшим почтением. Было это ещё в I веке до н. э. На рубеже XVI-XVII веков знаменитый немецкий астроном Иоганн Кеплер назвал её одним из сокровищ геометрии, сравнимым с мерой золота. Вряд ли во всей математике найдётся более весомое и значимое утверждение, ведь по числу научных и практических приложений теореме Пифагора нет равных.

Теорема Пифагора для случая равнобедренного прямоугольного треугольника.

Наука и жизнь // Иллюстрации

Иллюстрация к теореме Пифагора из «Трактата об измерительном шесте» (Китай, III век до н. э.) и реконструированное на его основе доказательство.

Наука и жизнь // Иллюстрации

С. Перкинс. Пифагор.

Чертёж к возможному доказательству Пифагора.

«Мозаика Пифагора» и разбиение ан-Найризи трёх квадратов в доказательстве теоремы Пифагора.

П. де Хох. Хозяйка и служанка во внутреннем дворике. Около 1660 года.

Я. Охтервелт. Бродячие музыканты в дверях богатого дома. 1665 год.

Пифагоровы штаны

Теорема Пифагора едва ли не самая узнаваемая и, несомненно, самая знаменитая в истории математики. В геометрии она применяется буквально на каждом шагу. Несмотря на простоту формулировки, эта теорема отнюдь не очевидна: глядя на прямоугольный треугольник со сторонами a < b < c, усмотреть соотношение a 2 + b 2 = c 2 невозможно. Однажды известный американский логик и популяризатор науки Рэймонд Смаллиан, желая подвести учеников к открытию теоремы Пифагора, начертил на доске прямоугольный треугольник и по квадрату на каждой его стороне и сказал: «Представьте, что эти квадраты сделаны из кованого золота и вам предлагают взять себе либо один большой квадрат, либо два маленьких. Что вы выберете?» Мнения разделились пополам, возникла оживлённая дискуссия. Каково же было удивление учеников, когда учитель объяснил им, что никакой разницы нет! Но стоит только потребовать, чтобы катеты были равны, - и утверждение теоремы станет явным (рис. 1). И кто после этого усомнится, что «пифагоровы штаны» во все стороны равны? А вот те же самые «штаны», только в «сложенном» виде (рис. 2). Такой чертёж использовал герой одного из диалогов Платона под названием «Менон», знаменитый философ Сократ, разбирая с мальчиком-рабом задачу на построение квадрата, площадь которого в два раза больше площади данного квадрата. Его рассуждения, по сути, сводились к доказательству теоремы Пифагора, пусть и для конкретного треугольника.

Фигуры, изображённые на рис. 1 и 2, напоминают простейший орнамент из квадратов и их равных частей - геометрический рисунок, известный с незапамятных времён. Им можно сплошь покрыть плоскость. Математик назвал бы такое покрытие плоскости многоугольниками паркетом, или замощением . При чём тут Пифагор? Оказывается, он первым решил задачу о правильных паркетах, с которой началось изучение замощений различных поверхностей. Так вот, Пифагор показал, что плоскость вокруг точки могут покрыть без пробелов равные правильные многоугольники только трёх видов: шесть треугольников, четыре квадрата и три шестиугольника.

4000 лет спустя

История теоремы Пифагора уходит в глубокую древность. Упоминания о ней содержатся ещё в вавилонских клинописных текстах времён царя Хаммурапи (XVIII век до н. э.), то есть за 1200 лет до рождения Пифагора. Теорема применялась как готовое правило во многих задачах, самая простая из которых - нахождение диагонали квадрата по его стороне. Не исключено, что соотношение a 2 + b 2 = c 2 для произвольного прямоугольного треугольника вавилоняне получили, попросту «обобщив» равенство a 2 + a 2 = c 2 . Но им это простительно - для практической геометрии древних, сводившейся к измерениям и вычислениям, строгих обоснований не требовалось.

Теперь, почти 4000 лет спустя, мы имеем дело с теоремой-рекордсменом по количеству всевозможных доказательств. Между прочим, их коллекционирование - давняя традиция. Пик интереса к теореме Пифагора пришёлся на вторую половину XIX - начало XX столетия. И если первые коллекции содержали не более двух-трёх десятков доказательств, то к концу XIX века их число приблизилось к 100, а ещё через полвека превысило 360, и это только тех, что удалось собрать по разным источникам. Кто только не брался за решение этой нестареющей задачи - от именитых учёных и популяризаторов науки до конгрессменов и школьников. И что примечательно, в оригинальности и простоте решения иные любители не уступали профессионалам!

Самым древним из дошедших до нас доказательствам теоремы Пифагора около 2300 лет. Одно из них - строгое аксиоматическое - принадлежит древнегреческому математику Евклиду, жившему в IV-III веках до н. э. В I книге «Начал» теорема Пифагора значится как «Предложение 47». Самые наглядные и красивые доказательства построены на перекраивании «пифагоровых штанов». Они выглядят как хитроумная головоломка на разрезание квадратов. Но заставьте фигуры правильно двигаться - и они откроют вам секрет знаменитой теоремы.

Вот какое изящное доказательство получается на основе чертежа из одного древнекитайского трактата (рис. 3), и сразу проясняется его связь с задачей об удвоении площади квадрата.

Именно такое доказательство пытался объяснить своему младшему другу семилетний Гвидо, не по годам смышлёный герой новеллы английского писателя Олдоса Хаксли «Маленький Архимед». Любопытно, что рассказчик, наблюдавший эту картину, отметил простоту и убедительность доказательства, поэтому приписал его... самому Пифагору. А вот главный герой фантастической повести Евгения Велтистова «Электроник - мальчик из чемодана» знал 25 доказательств теоремы Пифагора, в том числе данное Евклидом; правда, ошибочно назвал его простейшим, хотя на самом деле в современном издании «Начал» оно занимает полторы страницы!

Первый математик

Пифагора Самосского (570-495 годы до н. э.), чьё имя давно и неразрывно связано с замечательной теоремой, в известном смысле можно назвать первым математиком. Именно с него математика начинается как точная наука, где всякое новое знание - результат не наглядных представлений и вынесенных из опыта правил, а итог логических рассуждений и выводов. Лишь так можно раз и навсегда установить истинность любого математического предложения. До Пифагора дедуктивный метод применял только древнегреческий философ и учёный Фалес Милетский, живший на рубеже VII-VI веков до н. э. Он высказал саму идею доказательства, но применял его не систематически, избирательно, как правило, к очевидным геометрическим утверждениям типа «диаметр делит круг пополам». Пифагор продвинулся гораздо дальше. Считается, что он ввёл первые определения, аксиомы и методы доказательства, а также создал первый курс геометрии, известный древним грекам под названием «Предание Пифагора». А ещё он стоял у истоков теории чисел и стереометрии.

Другая важная заслуга Пифагора - основание славной школы математиков, которая более столетия определяла развитие этой науки в Древней Греции. С его именем связывают и сам термин «математика» (от греческого слова μαθημa - учение, наука), объединивший четыре родственные дисциплины созданной Пифагором и его приверженцами - пифагорейцами - системы знаний: геометрию, арифметику, астрономию и гармонику.

Отделить достижения Пифагора от достижений его учеников невозможно: следуя обычаю, они приписывали собственные идеи и открытия своему Учителю. Никаких сочинений ранние пифагорейцы не оставили, все сведения они передавали друг другу устно. Так что 2500 лет спустя историкам не остаётся ничего иного, кроме как реконструировать утраченные знания по переложениям других, более поздних авторов. Отдадим должное грекам: они хоть и окружали имя Пифагора множеством легенд, однако не приписывали ему ничего такого, чего он не мог бы открыть или развить в теорию. И носящая его имя теорема не исключение.

Такое простое доказательство

Неизвестно, Пифагор сам обнаружил соотношение между длинами сторон в прямоугольном треугольнике или позаимствовал это знание. Античные авторы утверждали, что сам, и любили пересказывать легенду о том, как в честь своего открытия Пифагор принёс в жертву быка. Современные историки склонны считать, что он узнал о теореме, познакомившись с математикой вавилонян. Не знаем мы и о том, в каком виде Пифагор формулировал теорему: арифметически, как принято сегодня, - квадрат гипотенузы равен сумме квадратов катетов, или геометрически, в духе древних, - квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на его катетах.

Считается, что именно Пифагор дал первое доказательство теоремы, носящей его имя. Оно, конечно, не сохранилось. По одной из версий, Пифагор мог воспользоваться разработанным в его школе учением о пропорциях. На нём основывалась, в частности, теория подобия, на которую опираются рассуждения. Проведём в прямоугольном треугольнике с катетами a и b высоту к гипотенузе c. Получим три подобных треугольника, включая исходный. Их соответствующие стороны пропорциональны, a: с = m: a и b: c = n: b, откуда a 2 = c · m и b 2 = c · n. Тогда a 2 + b 2 = = c · (m + n) = c 2 (рис. 4).

Это всего лишь реконструкция, предложенная одним из историков науки, но доказательство, согласитесь, совсем простое: занимает всего-то несколько строк, не нужно ничего достраивать, перекраивать, вычислять... Неудивительно, что его не раз переоткрывали. Оно содержится, например, в «Практике геометрии» Леонардо Пизанского (1220), и его до сих пор приводят в учебниках.

Такое доказательство не противоречило представлениям пифагорейцев о соизмеримости: изначально они считали, что отношение длин любых двух отрезков, а значит, и площадей прямолинейных фигур, можно выразить с помощью натуральных чисел. Никакие другие числа они не рассматривали, не допускали даже дробей, заменив их отношениями 1: 2, 2: 3 и т. д. Однако, по иронии судьбы, именно теорема Пифагора привела пифагорейцев к открытию несоизмеримости диагонали квадрата и его стороны. Все попытки численно представить длину этой диагонали - у единичного квадрата она равна √2 - ни к чему не привели. Проще оказалось доказать, что задача неразрешима. На такой случай у математиков есть проверенный метод - доказательство от противного. Кстати, и его приписывают Пифагору.

Существование отношения, не выражаемого натуральными числами, положило конец многим представлениям пифагорейцев. Стало ясно, что известных им чисел недостаточно для решения даже несложных задач, что уж говорить обо всей геометрии! Это открытие стало поворотным моментом в развитии греческой математики, её центральной проблемой. Сначала оно привело к разработке учения о несоизмеримых величинах - иррациональностях, а затем - и к расширению понятия числа. Иными словами, с него началась многовековая история исследования множества действительных чисел.

Мозаика Пифагора

Если покрыть плоскость квадратами двух разных размеров, окружив каждый малый квадрат четырьмя большими, получится паркет «мозаика Пифагора». Такой рисунок издавна украшает каменные полы, напоминая о древних доказательствах теоремы Пифагора (отсюда его название). По-разному накладывая на паркет квадратную сетку, можно получить разбиения квадратов, построенных на сторонах прямоугольного треугольника, которые предлагались разными математиками. Например, если расположить сетку так, чтобы все её узлы совпали с правыми верхними вершинами малых квадратов, проявятся фрагменты чертежа к доказательству средневекового персидского математика ан-Найризи, которое он поместил в комментариях к «Началам» Евклида. Легко видеть, что сумма площадей большого и малого квадратов, исходных элементов паркета, равна площади одного квадрата наложенной на него сетки. А это означает, что указанное разбиение действительно пригодно для укладки паркета: соединяя в квадраты полученные многоугольники, как показано на рисунке, можно заполнить ими без пробелов и перекрытий всю плоскость.

Некоторые дискуссии меня развлекают безмерно...

Привет, что делаешь?
-Да вот, задачки решаю из журнала.
-Ну ты даёшь! Не ожидал от тебя.
-Чего не ожидал?
-Что ты опустишься до задачек. Вроде умный ведь, а веришь во всякую ерунду.
-Извини, не понимаю. Что ты называешь ерундой?
-Да всю эту вашу математику. Ведь очевидно же, что фигня полная.
-Как ты можешь так говорить? Математика - царица наук...
-Вот только давай без этого пафоса, да? Математика - вообще не наука, а одно сплошное нагромождение дурацких законов и правил.
-Что?!
-Ой, ну не делай такие большие глаза, ты же сам знаешь, что я прав. Нет, я не спорю, таблица умножения - великая вещь, она сыграла немалую роль в становлении культуры и истории человечества. Но теперь-то это всё уже неактуально! И потом, зачем было всё усложнять? В природе не существует никаких интегралов или логарифмов, это всё выдумки математиков.
-Погоди. Математики ничего не выдумывали, они открывали новые законы взаимодействия чисел, пользуясь проверенным инструментарием...
-Ну да, конечно! И ты этому веришь? Ты что, сам не видишь, какую чушь они постоянно несут? Тебе привести пример?
-Да уж, будь добр.
-Да пожалуйста! Теорема Пифагора.
-Ну и что в ней не так?
-Да всё не так! "Пифагоровы штаны на все стороны равны", понимаете ли. А ты в курсе, что греки во времена Пифагора не носили штанов? Как Пифагор мог вообще рассуждать о том, о чём не имел никакого понятия?
-Погоди. При чём тут штаны?
-Ну они же вроде бы Пифагоровы? Или нет? Ты признаёшь, что у Пифагора не было штанов?
-Ну, вообще-то, конечно, не было...
-Ага, значит, уже в самом названии теоремы явное несоответствие! Как после этого можно относиться серьёзно к тому, что там говорится?
-Минутку. Пифагор ничего не говорил о штанах...
-Ты это признаёшь, да?
-Да... Так вот, можно я продолжу? Пифагор ничего не говорил о штанах, и не надо ему приписывать чужие глупости...
-Ага, ты сам согласен, что это всё глупости!
-Да не говорил я такого!
-Только что сказал. Ты сам себе противоречишь.
-Так. Стоп. Что говорится в теореме Пифагора?
-Что все штаны равны.
-Блин, да ты вообще читал эту теорему?!
-Я знаю.
-Откуда?
-Я читал.
-Что ты читал?!
-Лобачевского.
*пауза*
-Прости, а какое отношение имеет Лобачевский к Пифагору?
-Ну, Лобачевский же тоже математик, и он вроде бы даже более крутой авторитет, чем Пифагор, скажешь нет?
*вздох*
-Ну и что же сказал Лобачевский о теореме Пифагора?
-Что штаны равны. Но это же чушь! Как такие штаны вообще можно носить? И к тому же, Пифагор вообще не носил штанов!
-Лобачевский так сказал?!
*секундная пауза, с уверенностью*
-Да!
-Покажи мне, где это написано.
-Нет, ну там это не написано так прямо...
-Как называется книга?
-Да это не книга, это статья в газете. Про то, что Лобачевский на самом деле был агент германской разведки... ну, это к делу не относится. Всё-равно он наверняка так говорил. Он же тоже математик, значит они с Пифагором заодно.
-Пифагор ничего не говорил про штаны.
-Ну да! О том и речь. Фигня это всё.
-Давай по порядку. Откуда ты лично знаешь, о чём говорится в теореме Пифагора?
-Ой, ну брось! Это же все знают. Любого спроси, тебе сразу ответят.
-Пифагоровы штаны - это не штаны...
-А, ну конечно! Это аллегория! Знаешь, сколько раз я уже такое слышал?
-Теорема Пифагора гласит, что сумма квадратов катетов равна квадрату гипотенузы. И ВСЁ!
-А где штаны?
-Да не было у Пифагора никаких штанов!!!
-Ну вот видишь, я тебе о том и толкую. Фигня вся ваша математика.
-А вот и не фигня! Смотри сам. Вот треугольник. Вот гипотенуза. Вот катеты...
-А почему вдруг именно это катеты, а это гипотенуза? Может, наоборот?
-Нет. Катетами называются две стороны, образующие прямой угол.
-Ну вот тебе ещё один прямой угол.
-Он не прямой.
-А какой же он, кривой?
-Нет, он острый.
-Так и этот тоже острый.
-Он не острый, он прямой.
-Знаешь, не морочь мне голову! Ты просто называешь вещи как тебе удобно, лишь бы подогнать результат под желаемый.
-Две короткие стороны прямоугольного треугольника - это катеты. Длинная сторона - гипотенуза.
-А, кто короче - тот катет? И гипотенуза, значит, уже не катит? Ты сам-то послушай себя со стороны, какой ты бред несёшь. На дворе 21 век, расцвет демократии, а у тебя средневековье какое-то. Стороны у него, видишь ли, неравны...
-Прямоугольного треугольника с равными сторонами не существует...
-А ты уверен? Давай я тебе нарисую. Вот, смотри. Прямоугольный? Прямоугольный. И все стороны равны!
-Ты нарисовал квадрат.
-Ну и что?
-Квадрат - не треугольник.
-А, ну конечно! Как только он нас не устраивает, сразу "не треугольник"! Не морочь мне голову. Считай сам: один угол, два угла, три угла.
-Четыре.
-Ну и что?
-Это квадрат.
-А квадрат что, не треугольник? Он хуже, да? Только потому, что я его нарисовал? Три угла есть? Есть, и даже вот один запасной. Ну и нефиг тут, понимаешь...
-Ладно, оставим эту тему.
-Ага, уже сдаёшься? Нечего возразить? Ты признаёшь, что математика - фигня?
-Нет, не признаю.
-Ну вот, опять снова-здорово! Я же тебе только что всё подробно доказал! Если в основе всей вашей геометрии лежит учение Пифагора, а оно, извиняюсь, полная чушь... то о чём вообще можно дальше рассуждать?
-Учение Пифагора - не чушь...
-Ну как же! А то я не слышал про школу пифагорейцев! Они, если хочешь знать, предавались оргиям!
-При чём тут...
-А Пифагор вообще был педик! Он сам сказал, что Платон ему друг.
-Пифагор?!
-А ты не знал? Да они вообще все педики были. И на голову трёхнутые. Один в бочке спал, другой голышом по городу бегал...
-В бочке спал Диоген, но он был философ, а не математик...
-А, ну конечно! Если кто-то в бочку полез, то уже и не математик! Зачем нам лишний позор? Знаем, знаем, проходили. А вот ты объясни мне, почему всякие педики, которые жили три тыщи лет назад и бегали без штанов, должны быть для меня авторитетом? С какой стати я должен принимать их точку зрения?
-Ладно, оставь...
-Да нет, ты послушай! Я тебя, в конце концов, тоже слушал. Вот эти ваши вычисления, подсчёты... Считать вы все умеете! А спроси у вас что-нибудь по существу, тут же сразу: "это частное, это переменная, а это два неизвестных". А ты мне в о-о-о-общем скажи, без частностей! И без всяких там неизвестных, непознанных, экзистенциальных... Меня от этого тошнит, понимаешь?
-Понимаю.
-Ну вот объясни мне, почему дважды два всегда четыре? Кто это придумал? И почему я обязан принимать это как данность и не имею права сомневаться?
-Да сомневайся сколько хочешь...
-Нет, ты мне объясни! Только без этих ваших штучек, а нормально, по-человечески, чтобы понятно было.
-Дважды два равно четырём, потому что два раза по два будет четыре.
-Масло масляное. Что ты мне нового сказал?
-Дважды два - это два, умноженное на два. Возьми два и два и сложи их...
-Так сложить или умножить?
-Это одно и то же...
-Оба-на! Выходит, если я сложу и умножу семь и восемь, тоже получится одно и то же?
-Нет.
-А почему?
-Потому что семь плюс восемь не равняется...
-А если я девять умножу на два, получится четыре?
-Нет.
-А почему? Два умножал - получилось, а с девяткой вдруг облом?
-Да. Дважды девять - восемнадцать.
-А дважды семь?
-Четырнадцать.
-А дважды пять?
-Десять.
-То есть, четыре получается только в одном частном случае?
-Именно так.
-А теперь подумай сам. Ты говоришь, что существуют некие жёсткие законы и правила умножения. О каких законах тут вообще может идти речь, если в каждом конкретном случае получается другой результат?!
-Это не совсем так. Иногда результат может совпадать. Например, дважды шесть равняется двенадцати. И четырежды три - тоже...
-Ещё хуже! Два, шесть, три четыре - вообще ничего общего! Ты сам видишь, что результат никак не зависит от исходных данных. Принимается одно и то же решение в двух кардинально различных ситуациях! И это при том, что одна и та же двойка, которую мы берём постоянно и ни на что не меняем, со всеми числами всегда даёт разный ответ. Где, спрашивается, логика?
-Но это же, как-раз, логично!
-Для тебя - может быть. Вы, математики, всегда верите во всякую запредельную хрень. А меня эти ваши выкладки не убеждают. И знаешь почему?
-Почему?
-Потому что я знаю , зачем нужна на самом деле ваша математика. Она ведь вся к чему сводится? "У Кати в кармане одно яблоко, а у Миши пять. Сколько яблок должен отдать Миша Кате, чтобы яблок у них стало поровну?" И знаешь, что я тебе скажу? Миша никому ничего не должен отдавать! У Кати одно яблоко есть - и хватит. Мало ей? Пусть идёт вкалывать, и сама себе честно заработает хоть на яблоки, хоть на груши, хоть на ананасы в шампанском. А если кто-то хочет не работать, а только задачки решать - пусть сидит со своим одним яблоком и не выпендривается!