Калейдоскоп схем кварцевых нч генераторов. Генератор синусоидального сигнала

To play a constant tone, click Play or press Space .

To change the frequency, drag the slider or press ← → (arrow keys). To adjust the frequency by 1 Hz, use the buttons or press Shift + ← and Shift + → . To adjust the frequency by 0.01 Hz, press Ctrl + ← and Ctrl + → ; to adjust it by 0.001 Hz, press Ctrl + Shift + ← and Ctrl + Shift+ → To halve/double the frequency (go down/up one octave), click ×½ and ×2 .

To change the wave type from a sine wave (pure tone) to a square/triangle/sawtooth wave, click the button.

You can mix tones by opening the Online Tone Generator in several browser tabs.

What can I use this tone generator for?

Tuning instruments, science experiments (what’s the resonant frequency of this wineglass? ), testing audio equipment (how low does my subwoofer go? ), testing your hearing (what’s the highest frequency you can hear? are there frequencies you can hear in only one ear? ).

Tinnitus frequency matching. If you have pure-tone , this online frequency generator can help you determine its frequency. Knowing your tinnitus frequency can enable you to better target masking sounds and . When you find a frequency that seems to match your tinnitus, make sure you check frequencies one octave higher (frequency × 2) and one octave lower (frequency × ½), as it is easy to confuse tones that are one octave apart.

Alzheimer’s disease. There is some early-stage scientific evidence that listening to a can reverse some of the molecular changes in the brains of Alzheimer’s patients. This is one of these things that sound too good to be true, but early results are very promising. Here’s a and a report from a user who tried 40 Hz therapy on his wife. (Note that this tone generator is not a medical device – I don’t guarantee anything! )

Comments

Support this site

If you use the Online Tone Generator and find it helpful, please support it with a little bit of money. Here’s the deal: My goal is to keep maintaining this site to make sure it stays compatible with current browser versions. Unfortunately, this takes a non-trivial amount of time (for example, figuring out an obscure browser bug can take many hours of work), which is a problem because I have to make a living. Donations from awesome, good-looking users like you buy me time to keep things running.

So if you think this tone generator is worth it, please support it with some money to help keep it online. The amount is entirely up to you – I only ask for what you consider fair price for the value you’re getting. Thanks!

Генераторы импульсов используют во многих радиотехнических устройствах (электронных счетчиках, реле времени), применяют при настройке цифровой техники. Диапазон частот таких генераторов может быть от единиц герц до многих мегагерц. Здесь приводятся простые схемы генераторов, в том числе на элементах цифровой «логики», которые широко используются в более сложных схемах как частотозадающие узлы, переключатели, источники образцовых сигналов и звуков.

На рис. 1 приведена схема генератора, который формирует одиночные импульсы прямоугольной формы при нажатии кнопки S1 (то есть он не является автогенератором, схемы которых приводятся далее). На логических элементах DD1.1 и DD1.2 собран RS-триггер, предотвращающий проникновение импульсов дребезга контактов кнопки на пересчетное устройство. В положении контактов кнопки S1, показанном на схеме, на выходе 1 будет напряжение высокого уровня, на выходе 2 - напряжение низкого уровня; при нажатой кнопке - наоборот. Этот генератор удобно использовать при проверке работоспособности различных счетчиков.

На рис. 2 показана схема простейшего генератора импульсов на электромагнитном реле. При подаче питания конденсатор С1 заряжается через резистор R1 и реле срабатывает, отключая источник питания контактами К 1.1. Но реле отпускает не сразу, поскольку некоторое время через его обмотку будет протекать ток за счет энергии, накопленной конденсатором С1. Когда контакты К 1.1 опять замкнутся, снова начнет заряжаться конденсатор - цикл повторяется.

Частота переключении электромагнитного реле зависит от его параметров, а также номиналов конденсатора С1 и резистора R1. При использовании реле РЭС-15 (паспорт РС4.591.004) переключение происходит примерно один раз в секунду. Такой генератор можно использовать, например, для коммутации гирлянд на новогодней елке, для получения других световых эффектов. Его недостаток - необходимость использования конденсатора значительной емкости.

На рис. 3 приведена схема еще одного генератора на электромагнитном реле, принцип работы которого аналогичен предыдущему генератору, но обеспечивает частоту импульсов 1 Гц при емкости конденсатора в 10 раз меньшей. При подаче питания конденсатор С1 заряжается через резистор R1. Спустя некоторое время откроется стабилитрон VD1 и сработает реле К1. Конденсатор начнет разряжаться через резистор R2 и входное сопротивление составного транзистора VT1VT2. Вскоре реле отпустит и начнется новый цикл работы генератора. Включение транзисторов VT1 и VT2 по схеме составного транзистора повышает входное сопротивление каскада. Реле К 1 может быть таким же, как и в предыдущем устройстве. Но можно использовать РЭС-9 (паспорт РС4.524.201) или любое другое реле, срабатывающее при напряжении 15...17 В и токе 20...50 мА.

В генераторе импульсов, схема которого приведена на рис. 4, использованы логические элементы микросхемы DD1 и полевой транзистор VT1. При изменении номиналов конденсатора С1 и резисторов R2 и R3 генерируются импульсы частотой от 0,1 Гц до 1 МГц. Такой широкий диапазон получен благодаря использованию полевого транзистора, что позволило применить резисторы R2 и R3 сопротивлением в несколько мегаом. С помощью этих резисторов можно изменять скважность импульсов: резистор R2 задает длительность напряжения высокого уровня на выходе генератора, а резистор R3 - длительность напряжения низкого уровня. Максимальная емкость конденсатора С1 зависит от его собственного тока утечки. В данном случае она составляет 1...2 мкФ. Сопротивления резисторов R2, R3 - 10...15 МОм. Транзистор VT1 может быть любым из серий КП302, КП303. Микросхема - К155ЛА3, ее питание составляет 5В стабилизированного напряжения. Можно использовать КМОП микросхемы серий К561, К564, К176, питание которых лежит в пределах 3 … 12 В, цоколевка таких микросхем другая и показана в конце статьи.

При наличии микросхемы КМОП (серия К176, К561) можно собрать широкодиапазонный генератор импульсов без применения полевого транзистора. Схема приведена на рис. 5. Для удобства установки частоты емкость конденсатора времязадающей цепи изменяют переключателем S1. Диапазон частот, формируемых генератором, составляет 1...10 000 Гц. Микросхема - К561ЛН2.

Если нужна высокая стабильность генерируемой частоты, то такой генератор можно сделать «кварцованным» - включить кварцевый резонатор на нужную частоту. Ниже показан пример кварцованного генератора на частоту 4,3 МГц:

На рис. 6 представлена схема генератора импульсов с регулируемой скважностью.

Скважность – отношение периода следования импульсов (Т) к их длительности (t):

Скважность импульсов высокого уровня на выходе логического элемента DD1.3, резистором R1 может изменяться от 1 до нескольких тысяч. При этом частота импульсов также незначительно изменяется. Транзистор VT1, работающий в ключевом режиме, усиливает импульсы по мощности.

Генератор, схема которого приведена на рисунке ниже, вырабатывает импульсы как прямоугольной, так и пилообразной формы. Задающий генератор выполнен на логических элементах DD 1.1-DD1.3. На конденсаторе С2 и резисторе R2 собрана дифференцирующая цепь, благодаря которой на выходе логического элемента DD1.5 формируются короткие положительные импульсы (длительностью около 1 мкс). На полевом транзисторе VT2 и переменном резисторе R4 выполнен регулируемый стабилизатор тока. Этот ток заряжает конденсатор С3, и напряжение на нем линейно возрастает. В момент поступления на базу транзистора VT1 короткого положительного импульса транзистор VT1 открывается, разряжая конденсатор СЗ. На его обкладках таким образом формируется пилообразное напряжение. Резистором R4 регулируют ток зарядки конденсатора и, следовательно, крутизну нарастания пилообразного напряжения и его амплитуду. Конденсаторы С1 и СЗ подбирают исходя из требуемой частоты импульсов. Микросхема - К561ЛН2.

Цифровые микросхемы в генераторах взаимозаменяемы в большинстве случаев и можно использовать в одной и той же схеме как микросхемы с элементами «И-НЕ», так и «ИЛИ-НЕ», или же просто инверторы. Вариант таких замен показан на примере рисунка 5, где была использована микросхема с инверторами К561ЛН2. Точно такую схему с сохранением всех параметров можно собрать и на К561ЛА7, и на К561ЛЕ5 (или серий К176, К564, К164), как показано ниже. Нужно только соблюдать цоколевку микросхем, которая во многих случаях даже совпадает.

Генератор синусоидальных сигналов частотой от 1 Гц до 40 МГц с регулировкой уровня выходного сигнала и встроенным измерителем уровня выходного сигнала (Up/p), а также с режимом генератора качающейся частоты (ГКЧ) с произвольным выбором границ в диапазоне от 1 Гц до 40 МГц



Предлагаю наборы для сборки генератора (GEN) синусоидальных сигналов 1 Гц - 40 МГц с режимом генераторы качающейся частоты (ГКЧ/WOB), дополнительным выходом пилообразного напряжения для синхронизации осциллографа, а также выходом 0/5 В прямоугольных импульсов с частотой качания генератора. Данное устройство разработал польский радиолюбитель Adam Sobczyk (SQ5RWQ). Данная конструкция была опубликована в журнале ELEKTRONIKA PRAKTYCZNA .

Устройство собрано с применением готового модуля DDS синтезатора AD9850, что значительно упрощает монтаж. Причём использоваться могут оба существующих в продаже модуля DDS AD9850. Конструктивно устройство состоит из двух печатных плат - основной и контроллера. На основной плате установлены разъёмы для платы контроллера, разъёмы для модулей синтезаторов (одновременно может использоваться только одна плата синтезатора), контактные штыри для внешних подключений, винтовой клеммник подачи питания, собраны стабилизаторы питающих напряжений +5В и +9В, в также широкополосный усилитель ВЧ сигнала. На плате контроллера установлен двухстрочный ЖКИ дисплей, энкодер выбора режимов работы и настройки, переменный резистор регулировки уровня выходного сигнала.

Выбор режима работы GEN - генератор или WOB - Wobbulator/ГКЧ выбирается при включении прибора нажатием и удержанием кнопки энкодера. При появлении приветственного меню нужно нажать кнопку энкодера и дождаться появления меню в котором вращением энкодера нужно выбрать режим GEN или WOB и затем подтвержить выбор нажатием на кнопку энкодера. В следующем меню аналогично выбирается режим работы цифрового выхода прямоугольных импульсов 0-5 В, т.е. вращением энкодера выбирается режим ON или OFF и нажатием на кнопку энкодера подтверждается выбор. Выбранные режимы будут сохраняться в энергонезависимой памяти при последующих включениях. Чтобы выбрать другой режим работы нужно обесточить прибор и снова подать напряжение, войти в меню выбора режимов работы и выбрать нужный режим. В режиме генератора шаг перестройки изменяется по кругу нажатием на кнопку энкодера. В режиме ГКЧ нажатием на кнопку энкодера выбирается активный пункт меню - напротив активного (который можно изменять в данный момент) в данный момент параметра светится звёздочка "*". При вращении энкодера значение выбранного параметра будет изменяться. Переключение между параметрами подлежащим изменению происходит по кругу. Прибор находится в режиме генерации колебаний когда на экране нет звёздочки, т.е. все параметры выбраны.


Схема принципиальная платы управления/индикации приведена ниже, а также


Принципиальная схема основной платы приведена ниже, а также


Прибор работает в двух режимах:
1) Генератор синусоидальных сигналов частотой 1 Гц - 40 МГц
2) Генератор качающейся частоты с диапазоном качания синусоидального сигнала от 1 Гц - 40 МГц.

В первом режиме на дисплее отображается частота выходного сигнала с точностью до 1 Гц, выбранный шаг перестройки частоты (выбирается нажатием на кнопку встроенную в энкодер, т.е. нажатием на ручку энкодера) и уровень выходного напряжения в Вольтах от пика до пика - Up/p. Шаг перестройки выбирается по кругу из сетки частот 1 Гц, 10 Гц, 100 Гц, 1 кГц, 10 кГц, 100 кГц, 1 МГц нажатием на кнопку энкодера. Уровень выходного напряжения практически совпадает с показаниями осциллографа, частота выходного сигнала соответствует точно. Уровень выходного сигнала с повышением частоты уменьшается, это обусловлено особенностью работы самой AD9850. На низких частотах выходное напряжение для различных модулей DDS составляет порядка 4 Вольт и уменьшается до 1 Вольта на частоте 40 МГц. Точнее, с чистой синусоидой на выходе, у меня получилось так:
40 МГц - Up/p=0,89 В
35 МГц - Up/p=1,18 В
30 МГц - Up/p=1,67 В
25 МГц - Up/p=2,09 В
20 МГц - Up/p=2,38 В
15 МГц - Up/p=2,62 В
10 МГц - Up/p=2,99 В
5 МГц - Up/p=3,37 В
1 МГц - Up/p=3,66 В
Затем практически без изменений до 30 Гц и потом с плавным снижением до Up/p=2,08 В на частоте 5 Гц и до Up/p=0,86 В на частоте 1 Гц.

Во втором режиме на дисплее отображается частота колебаний, шаг перестройки частоты, нижняя и верхняя границы колебания частоты генератора. Выбор и изменение параметров выполняется энкодером по аналогии с первым режимом работы - нажатием и вращением ручки энкодера. Частота колебаний выбирается от 1 Гц до 40 МГц с шагом 1 Гц, шаг перестройки по кругу из сетки частот 1 Гц, 10 Гц, 100 Гц, 1 кГц, 10 кГц, 100 кГц, 1 МГц, верхняя и нижняя частота колебаний от 1 Гц до 40 МГц, при этом сначала выставляется верхняя граница, а затем нижняя, поскольку есть программное ограничение - нижняя частота всегда меньше либо равна верхней.

Правильно собранное устройство из исправных:) деталей начинает работать сразу. До установки платы индикации/контроллера и модуля AD9850, подайте питающее напряжение на основную плату и проверьте наличие питающих напряжений +9 В и +5 В после стабилизаторов 7809 и 7805 соответственно. Затем проверьте уровни напряжений на выводах транзисторов широкополосного усилителя мощности. Напряжения должны быть такими: Q1 (коллектор - 6,65 В; эмиттер - 1,4 В; база - 2,1 В), Q2 (эмиттер - 7,37 В; коллектор - 2,5 В), Q3 (коллектор - 5,47 В; эмиттер - 1,74 В). При необходимости, подстроечным резистором на плате модуля AD9850 необходимо выставить скважность прямоугольных импульсов на выходе генератора равной 2 (коэффициент заполнения 0,5), т.е. меандр.

Платы разработаны для возможности установки в стандартный пластиковый корпус КМ-60, но в идеале, конечно же, применить металлический корпус:)

Стоимости печатных плат и наборов для сборки такие:

Стоимость комплекта из двух печатных плат (основная 140х90 мм и индикации 115х45 мм) с маской и маркировкой - 300 грн.

Если кому то нужен, отдельно запрограммированный микроконтроллер - 85 грн.

Стоимость набора для сборки генератора (запограммированный микроконтроллер с панелькой, печатные платы и все компоненты для них, включая стойки, винты, шайбы, гайки, радиаторы, энкодер, переменный резистор, ручки регуляторов, ЖКИ дисплей 16х2) без учёта модуля AD9850 - 830 грн.

Стоимость собранных и проверенных плат генератора (основная и плата контроллера/индикации) без учёта модуля AD9850 - 1200 грн.

Модуль генератора-синтезатора частоты AD9850 - 650 грн. (кладу в комплект такой, какой есть в наличии, если тип принципиален, то оговаривайте заранее, я разницы в работе плат разных типов не увидел). Данный генератор выполнен на базе микросхемы AD9850 фирмы Analog Devices, представляющей собой полный DDS (Direct Digital Synthesis) синтезатор частоты с встроенным компаратором. Такие синтезаторы уникальны своей точностью, практически не подвержены температурному дрейфу и старению.

Обнаружен небольшой "глюк", скорее всего программный - подтормаживает энкодер при вращении. Мне не мешает, но лучше от этого избавиться. Думаю, всё разрешится:) Плюсы прибора перекрывают его минусы:) Я сколько искал, не нашёл настолько простого и адекватного прибора...

Генератор – это автоколебательная система, формирующая импульсы электрического тока, в которой транзистор играет роль коммутирующего элемента. Изначально, с момента изобретения, транзистор позиционировался как усилительный элемент. Презентация первого транзистора произошла в 1947 году. Презентация полевого транзистора произошла несколько позже – в 1953 г. В генераторах импульсов он играет роль переключателя и только в генераторах переменного тока он реализует свои усилительные свойства, одновременно участвуя в создании положительной обратной связи для поддержки колебательного процесса.

Наглядная иллюстрация деления частотного диапазона

Классификация

Транзисторные генераторы имеют несколько классификаций:

  • по диапазону частот выходного сигнала;
  • по типу выходного сигнала;
  • по принципу действия.

Диапазон частот – величина субъективная, но для стандартизации принято такое деление частотного диапазона:

  • от 30 Гц до 300 кГц – низкая частота (НЧ);
  • от 300 кГц до 3 МГц – средняя частота (СЧ);
  • от 3 МГц до 300 МГц – высокая частота (ВЧ);
  • выше 300 МГц – сверхвысокая частота (СВЧ).

Таково деление частотного диапазона в области радиоволн. Существует звуковой диапазон частот (ЗЧ) – от 16 Гц до 22 кГц. Таким образом, желая подчеркнуть диапазон частот генератора, его называют, например ВЧ или НЧ генератором. Частоты звукового диапазона в свою очередь также подразделяются на ВЧ, СЧ и НЧ.

По типу выходного сигнала генераторы могут быть:

  • синусоидальные – для генерации синусоидальных сигналов;
  • функциональные – для автоколебания сигналов специальной формы. Частный случай – генератор прямоугольных импульсов ;
  • генераторы шума – генераторы широкого спектра частот, у которых в заданном диапазоне частот спектр сигнала равномерный от нижнего до верхнего участка частотной характеристики.

По принципу действия генераторов:

  • RC-генераторы;
  • LC-генераторы;
  • Блокинг-генераторы – формирователь коротких импульсов.

Ввиду принципиальных ограничений обычно RC-генераторы используются в НЧ и звуковом диапазоне, а LC-генераторы в ВЧ диапазоне частот.

Схемотехника генераторов

RC и LC генераторы синусоидальные

Наиболее просто реализуется генератор на транзисторе в схеме емкостной трехточки – генератор Колпитца (рис. ниже).

Схема генератора на транзисторе (генератор Колпитца)

В схеме Колпитца элементы (C1), (C2), (L) являются частотозадающими. Остальные элементы представляют собой стандартную обвязку транзистора для обеспечения необходимого режима работы по постоянному току. Такой же простой схемотехникой обладает генератор, собранный по схеме индуктивной трехточки – генератор Хартли (рис. ниже).

Схема трехточечного генератора с индуктивной связью (генератор Хартли)

В этой схеме частота генератора определяется параллельным контуром, в который входят элементы (C), (La), (Lb). Конденсатор (С) необходим для образования положительной обратной связи по переменному току.

Практическая реализация такого генератора более затруднительна, поскольку требует наличия индуктивности с отводом.

И тот и другой генераторы автоколебания находят преимущественно применение в СЧ и ВЧ диапазонах в качестве генераторов несущих частот, в частотозадающих цепях гетеродинов и так далее. Регенераторы радиоприемников также основаны на генераторах колебаний. Указанное применение требует высокой стабильности частоты, поэтому практически всегда схема дополняется кварцевым резонатором колебаний.

Задающий генератор тока на основе кварцевого резонатора имеет автоколебания с очень высокой точностью установки значения частоты ВЧ генератора. Миллиардные доли процента далеко не предел. Регенераторы радиостанций используют только кварцевую стабилизацию частоты.

Работа генераторов в области низкочастотного тока и звуковой частоты связана с трудностями реализации высоких значений индуктивности. Если быть точнее, то в габаритах необходимой катушки индуктивности.

Схема генератора Пирса является модификацией схемы Колпитца, реализованной без применения индуктивности (рис. ниже).

Схема генератора Пирса без применения индуктивности

В схеме Пирса индуктивность заменена кварцевым резонатором, что позволило избавиться от трудоемкой и громоздкой катушки индуктивности и, в то же время, ограничило верхний диапазон колебаний.

Конденсатор (С3) не пропускает постоянную составляющую базового смещения транзистора на кварцевый резонатор. Такой генератор может формировать колебания до 25 МГц, в том числе и звуковой частоты.

Работа всех вышеперечисленных генераторов основана на резонансных свойствах колебательной системы, составленной из емкости и индуктивности. Соответственно, частота колебаний определяется номиналами этих элементов.

RC генераторы тока используют принцип фазового сдвига в резистивно-емкостной цепи. Наиболее часто применяется схема с фазосдвигающей цепочкой (рис. ниже).

Схема RC генератора с фазосдвигающей цепочкой

Элементы (R1), (R2), (C1), (C2), (C3) выполняют сдвиг фазы для получения положительной обратной связи, необходимой для возникновения автоколебаний. Генерация возникает на частотах, для которых фазовый сдвиг оптимален (180 гр). Фазосдвигающая цепь вносит сильное ослабление сигнала, поэтому такая схема имеет повышенные требования к коэффициенту усиления транзистора. Менее требовательна к параметрам транзистора схема с мостом Вина (рис. ниже).

Схема RC генератора с мостом Вина

Двойной Т-образный мост Вина состоит из элементов (C1), (C2), (R3) и (R1), (R2), (C3) и представляет собой узкополосный заграждающий фильтр, настроенный на частоту генерации. Для всех остальных частот транзистор охвачен глубокой отрицательной связью.

Функциональные генераторы тока

Функциональные генераторы предназначены для формирования последовательности импульсов определенной формы (форму описывает некая функция – отсюда и название). Наиболее часто встречаются генераторы прямоугольных (если отношение длительности импульса к периоду колебаний составляет ½, то такая последовательность называется «меандр»), треугольных и пилообразных импульсов. Самый простой генератор прямоугольных импульсов – мультивибратор, подается как первая схема начинающих радиолюбителей для сборки своими руками (рис. ниже).

Схема мультивибратора – генератора прямоугольных импульсов

Особенностью мультивибратора является то, что в нем можно использовать практически любые транзисторы. Длительность импульсов и пауз между ними определяется номиналами конденсаторов и резисторов в базовых цепях транзисторов (Rb1), Cb1) и (Rb2), (Cb2).

Частота автоколебания тока может изменяться от единиц герц до десятков килогерц. ВЧ автоколебания на мультивибраторе реализовать невозможно.

Генераторы треугольных (пилообразных) импульсов, как правило, строятся на основе генераторов прямоугольных импульсов (задающий генератор) путем добавления корректирующей цепочки (рис. ниже).

Схема генератора треугольных импульсов

Форма импульсов, близкая к треугольной, определяется напряжением заряда-разряда на обкладках конденсатора С.

Блокинг-генератор

Предназначение блокинг-генераторов состоит в формировании мощных импульсов тока, имеющих крутые фронты и малую скважность. Длительность пауз между импульсами намного больше длительности самих импульсов. Блокинг-генераторы находят применение в формирователях импульсов, сравнивающих устройствах, но основная область применения – задающий генератор строчной развертки в устройствах отображения информации на основе электронно-лучевых трубок. Также блокинг-генераторы с успехом применяются в устройствах преобразования электроэнергии.

Генераторы на полевых транзисторах

Особенностью полевых транзисторов является очень высокое входное сопротивление, порядок которого соизмерим с сопротивлением электронных ламп. Перечисленные выше схемотехнические решения универсальны, просто они адаптированы под использование различных типов активных элементов. Генераторы Колпитца, Хартли и другие, выполненные на полевом транзисторе, отличаются только номиналами элементов.

Частотозадающие цепи имеют те же соотношения. Для генерирования ВЧ колебаний несколько предпочтительнее простой генератор, выполненный на полевом транзисторе по схеме индуктивной трехточки. Дело в том, что полевой транзистор, имея высокое входное сопротивление, практически не оказывает шунтирующее действие на индуктивность, а, следовательно, работать высокочастотный генератор будет стабильнее.

Генераторы шума

Особенностью генераторов шума является равномерность частотной характеристики в определенном диапазоне, то есть амплитуда колебаний всех частот, входящих в заданный диапазон, является одинаковой. Генераторы шума находят применение в измерительной аппаратуре для оценки частотных характеристик проверяемого тракта. Генераторы шума звукового диапазона часто дополняются корректором частотной характеристики с целью адаптации под субъективную громкость для человеческого слуха. Такой шум называется «серым».

Видео

До сих пор существует несколько областей, в которых применение транзисторов затруднено. Это мощные генераторы СВЧ диапазона в радиолокации, и там, где требуется получение особо мощных импульсов высокой частоты. Пока еще не разработаны мощные транзисторы СВЧ диапазона. Во всех других областях подавляющее большинство генераторов выполняется исключительно на транзисторах. Причин этому несколько. Во-первых, габариты. Во-вторых, потребляемая мощность. В-третьих, надежность. Вдобавок ко всему, транзисторы из-за особенностей своей структуры очень просто поддаются миниатюризации.

Ниже представляются несколько схем низкочастотных генераторов с использованием НЧ кварцев, на такие частоты как 100 кГц, 36 кГц, 32.768 кГц. Можно использовать кварцы на другие частоты.Также представлена схема микромощного генератора на 135 кГц. Все схемы были собраны в результате экспериментов с ретранслятором сигналов 500 кГц - 144 МГц.

Генератор на частоту 135 кГц

Особенность синтезатора - использование керамического кварцевого резонатора на 455 кГц, цифрового делителя на 10 и аналогового умножителя на 3. Данный генератор - микромощное усройство с током потребления 1,5 мА при напряжении питания 5 Вольт. Уровень выходного напряжения может быть значительным, выход высокоомный. Задающий генератор перестраивается в широких пределах - от 448 до 457 кГц и более с небольшим ухудшением стабильности частоты, но она все же больше чем у LC генератора. Результирующая частота будет составлять от 134,4 до 137,1 кГц, что удобно для использования в качестве задающего генератора в ДВ передатчике. На транзисторе VT1 собран задающий генератор по схеме емкостной трехточки. Микросхема IC1 - включена по схеме делителя на 10. На VT2 собран умножитель на 3. Нагрузкой служит коллекторый контур на L1 настроенный на номинальнцю частоту. Контур намотан в броневом сердечнике от генератора стирания-подмагничивания старого магнитофона и содержит 50 витков многожильного литцендрата (количество витков выбирается исходя из имеющегося сердечника). Увеличив номинал С5 уменьшая R4 можно значительно увеличить напряжение на контуре L1C7C8C9 . Посмотреть дополнительно ссылку . Источник - журнал Радио №6 1990 г. (Синтезатор частоты на диапазона 144 МГц) .

Генератор на 100 кГц

Классическая схема кварцевого генератора с емкостной трехточкой. При использовании высококачественного кварцевого резонатора в стеклянной колбе работоспособен в широких изменениях питающего напряжения. от 1,5 Вольт и менее до 12 Вольт. Номинал резистора R 2от 1 кОм до 30 кОм. При номинале в 30 кОм ток потребления от элемента 1,5 В - 40 мкА. С1, С2 - изменения частоты генерации. С1 может отсутствовать. С часовыми кварцами в малогабаритных цилиндрических корпусах схема не работает

Генератор на 36 кГц (1 вариант)

В этом генераторе используется НЧ усилитель мощности LM386 . Это не типовая схема включения данной микросхемы, однако схема стабильно работает с НЧ кварцевыми резонаторами. Работоспособна при изменении питающих напряжений от 5 до 12 Вольт. С1 - подстройка частоты. При низких напряжениях схема не работоспособна.

Генератор на 36 кГц (2 вариант)

В основе схемы лежит использование НЧ усилителя с обратной связью на С2 и кварцевым резонатором между базой и коллектором 2-х транзисторах. Схема работоспособна в широких изменениях питающего напряжения. от 1,5 Вольт и менее до 12 Вольт. В схеме можно изменять номиналы любых элементов в широких пределах без нарушения работоспособности схемы. С2 - подстройка частоты генерации. Изменяется частота, токи потребления и выходная мощность. Транзисторы заменимы на КТ342.

PS:
Возможно Вам пригодятся описанные здесь схемы в радиолюбительском творчестве!