Что такое спонтанное и индуцированное излучение. Индуцированные и спонтанные переходы

Низшему энергетическому уровню атома соответствует орбита наименьшего радиуса. В обычном состоянии электрон находится на этой орбите. При сообщении порции энергии электрон переходит на другой энергетический уровень, т.е. "перескакивает" на одну из внешних орбит. В таком, так называемом возбужденном состоянии атом неустойчив. Через некоторое время электрон переходит на более низкий уровень, т.е. на орбиту меньшего радиуса. Переход электрона с дальней орбиты на ближнюю сопровождается испусканием светового кванта. Свет - это поток испускаемых атомами особых частиц - фотонов, или квантов электромагнитного излучения. Их следует представлять себе в виде отрезков волны, а не как частицы вещества. Каждый фотон несёт строго определённую порцию энергии, “выброшенную” атомом.

В основном состоянии атомы находятся на 1 энергетическом уровне с наименьшей энергией. Чтобы перевести атом на уровень 2, ему надо сообщить энергию hν=∆E=E2-E1. Или говорят, необходимо, чтобы атом провзаимодействовал с одним квантом энергии. Обратный переход 2 электронов может происходить самопроизвольно, только в одном направлении. Наряду с этими переходами возможны и вынужденные переходы под влиянием внешнего излучения. Переход 1à2 всегда вынужденный. Атом, оказавшийся в состоянии 2, живёт в нем в течении 10(с.-8)с, после чего атом спантанно возвращается в исходное состояние. Наряду со спонтанным переходом 2à1 возможен вынужденный переход, при этом излучается квант энергии, который вызвал этот переход. Это дополнительное излучение называется вынужденным или индуцированным. Т.о. под влиянием внешнего излучения возможны 2 перехода: вынужденное излучение и вынужденное поглощение, причем оба процесса равновероятны. Дополнительный квант, испускаемый при вынужденном излучении, приводит к усилению света. Индуцированное излучение обладает свойствами: 1) нагревание индуцированного кванта совпадает с напряжением индуцирующего кванта, 2) фаза, поляризация, частота индуцирующего излучения совпадает с фазой, поляризацией и частотой индуцирующего излучения, т.е. индуцированное и индуцирующее излучение высококогерентны, 3) при каждом индуцированном переходе происходит выигрыш в 1 квант энергии, т.е. усиление света. j

БИЛЕТ 8

Субъективные характеристики восприятия звука, их связь с объективными характеристиками звука.

Субъективные характеристики звука

В сознании человека под действием нервных импульсов, поступающих от звуковоспринимающего органа, формируются слуховые ощущения, кото­рые субъект может охарактеризовать определенным образом.

Существуют три субъективные характеристики звук, основанные на ощущениях, которые данный звук вызывает у субъекта: высота звука, тембр звука и громкость звука.

Понятием высота субъект оценивает звуки разных частот: чем больше частота звука, тем более высоким называется данный звук. Однако между частотой звука и его высотой нет однозначного соответствия. На восприятие высоты звука влияет его интенсивность. Из двух звуков одинаковой частоты звук большей интенсивности воспринимается как более низкий.

Тембром звука называется качественная характеристика звука (своеобразная "окраска" звука) связанная с его спектральным составом. Голоса разных людей различаются между собой. Это различие определяется разным спектральным составом звуков, воспроизводимых разными людьми. Существуют специальные названия для голосов разного тембра: бас, тенор, сопрано и др.. По этой же причине люди различает одинаковые ноты, воспроизведенные на разных музыкальных инструментах: у разных инструментов разный спектральный состав звуков.

Громкость - это субъективная характеристика звука, определяющая уровень слухового ощущения: чем выше уровень слухового ощущения возникающий у субъекта, тем более громким называет субъект данный звук.

Величина слухового ощущения (громкость) зависит от интенсивности звука и- чувствительности слухового аппарата субъекта. Чем выше интенсивность звука, тем выше величина слухового ощущения (громкость) при прочих равных условиях.

Слуховой аппарат человека способен воспринимать звуки, интенсив­ность которых меняется в весьма широких пределах. Для появления слухового ощущения интенсивность звука должна превышать некоторое определенное значение / 0 Минимальное значение интенсивности звука / 0 , воспринимаемое слуховым аппаратом субъекта, называется пороговой интенсивностью, или порогом слышимости. У разных людей величина порога слышимости имеет разное значение и меняется при изменении частоты звука. В среднем для людей с нормальным слухом на частотах 1-3 кГц и порог слышимости Iо принимается равным 10" 12 Вт/м".

С другой стороны, При превышении интенсивности звука некоторого предела в органе слуха вместо слухового ощущения возникает ощущение боли.

Максимальное значение интенсивности звука I Maxi еще воспринимаемого субъектом как звуковое ощущение, называется порогом болевого ощущения. Величина порога боле­вого ощущения примерно равна 10 Вт/м". Порог слышимости 1 0 и порог болевого ощущения 1 мах определяют интервал интенсивностей звуков, создающих у субъекта слуховое ощущение.

Блок-схема электронного диагностического прибора. Термодатчик, устройство и принцип действия. Чувствительность термодатчика.

Спектроскоп. Оптическая схема и принцип действия спектроскопа.

БИЛЕТ 9

Закон Вебера-Фехнера. Громкость звуков, единицы измерения громкости.

Чувствительность слухового аппарата человека, в свою очередь, сама зависит от интенсивности звука и его частоты. Зависимость чувствительности от интенсивности является общим свойством всех органов чувств и называется адаптацией. Чувствительность органов чувств к внешнему раздражителю автоматически уменьшается с повышением интенсивности раздражителя. Количественно взаимосвязь чувствительности органа и интенсивности раздражителя выражается эмпирическим законом Вебера-Фехнера: при сравнении двух раздражителей прирост силы ощущения пропорционален логарифму отношения интенсивностей раздражителей.

Математически эта взаимосвязь выражается соотношением

∆E = E 2 -E 1 , = k*lgI 2 /I 1

где I 2 иI 1 - интенсивности раздражителей,

E 2 иE 1 - соответствующие им силы ощущений,

к - коэффициент, зависящий от выбора единиц измерения интенсивностей и сил ощущений.

В соответствии с законом Вебера-Фехнера при увеличении интенсивности звука увеличивается и величина слухового ощущения (громкость); однако за счет уменьшения чувствительности величина слухового ощущения воз­растает в меньшей степени, чем интенсивность звука. Величина слухового ощущения нарастает при увеличении интенсивности звука пропорционально логарифму интенсивности.

Используя закон Вебера-Фехнера и понятие пороговой интенсивности, можно ввести количественную оценку громкости. Положим в формуле (4) интенсивность первого раздражителя (звука) равной пороговой (I 1 =I 0), тогда E 1 будет равно нулю. Опуская индекс "2", получим E = k*lgI/I 0

Величина слухового ощущения (громкость) Е пропорциональна лога­рифму отношения интенсивности звука, создавшего эту величину ощущения, к пороговой интенсивности I 0. Полагая коэффициент пропорциональности к равным единице, получим величину слухового ощущения Е в единицах, называемых "бел".

Таким образом величина слухового ощущения (громкость) определяется по формуле

E = lgI/I 0 [Б].

Наряду с белами используется единица в 10 раз меньшая, получившая название "децибел". Громкость звука в децибелах определяется по формуле

E = 10lgI/I 0 [ДБ].

Блок-схема электронного диагностического прибора. Назначение и основные характеристики усилителя. Виды искажений. Коэффициент усиления усилителя, его зависимость от параметров схемы.

Коэффициент пропускания и оптическая плотность растворов, их зависимость от концентрации.


Процессы генерации и рекомбинации носителей заряда неотъемлемы друг от друга, хотя и противоположны по содержанию. Энергия при рекомбинации может выделяться либо в виде фотона (излучательная рекомбинация), либо в виде фонона (безызлучательная рекомбинация).

В последние годы разработан ряд типов приборов, преобразующих электрические сигналы в световые. В основе принципа их действия лежит так называемое рекомбинационное излучение - излучение квантов света при прямых рекомбинационных актах пар электрон - дырка.

Для интенсивной рекомбинации необходимо одновременно иметь высокую плотность электронов в зоне проводимости и высокую плотность свободных уровней (дырок) в валентной зоне.

Такие условия создаются при высоком уровне инжекции электронов в дырочный полупроводник с высокой концентрацией акцепторов.

Очевидно, что для того чтобы имела место излучательная рекомбинация, соответствующая прямым переходам, необходимо, чтобы полупроводник имел соответствующую зонную структуру: экстремумы валентной зоны и зоны проводимости должны соответствовать одному и тому же значению волнового вектора .

В настоящее время исследован ряд полупроводниковых соединений типов А III В V , A II B VI , а также других двойных (SiC) и тройных систем (типа GaAsP, InAsP, PbSnSe, PbSnTe и т. д.), на которых можно изготовить p-n-переходы, излучающие световые колебания при включении их в прямом направлении. Такие полупроводниковые источники света могут оказаться весьма удобными для целого ряда применений, например в качестве индикаторных устройств.

Легированием полупроводника теми или иными примесями удается за счет примесной зоны изменять энергию рекомбинации и, следовательно, длину волны излучаемого света. Так, p-n-переходы на GaP дают два максимума излучения: 5650 и 7000 Å. P-n-переходы на GaAsP обеспечивают свечение в диапазоне от 6000 до 7000 Å. Свечение в диапазоне длин волн 5600-6300 Å можно получить на переходах из карбида кремния. Работа в режиме излучательной рекомбинации происходит при относительно высоких плотностях тока (несколько сотен ампер на квадратный сантиметр) при квантовом выходе порядка 0,5-1,5%.

При более высоких плотностях тока, превышающих 500 а/см 2 и достигающих несколько тысяч а/см 2 , проявляется качественно новое явление -

При внешних напряжениях на переходе, приближающихся к контактной разности потенциалов (что соответствует очень высоким плотностям тока), происходит так называемая инверсия заселенности . Плотность занятых электронами уровней в зоне проводимости становится выше, чем плотность занятых электронами уровней у потолка валентной зоны.

Значение плотности тока, при котором наступает инверсия заселенности, называют пороговым током .

При токах ниже порогового имеют место случайные акты рекомбинации, т.е. так называемое спонтанное излучение.

При токах выше порогового световой квант, проходящий через полупроводник, вызывает стимулированное излучение - одновременную рекомбинацию ряда носителей заряда. В этом случае происходит усиление или генерация когерентных световых колебаний, т. е. колебаний, имеющих одну и ту же фазу.

Таким образом, при плотностях тока, превышающих пороговое значение, некоторые типы полупроводниковых p-n-переходов могут являться источниками лазерного излучения. Преимуществом полупроводниковых лазеров является то, что они не нуждаются в оптической накачке. Роль оптической накачки здесь выполняют инжекционные токи, создающие инверсную заселенность. Полупроводниковые лазеры могут иметь к.п.д., превышающий 50%, и являются особенно выгодными по сравнению с другими видами лазеров при использовании их в непрерывном режиме.

Наиболее распространенным материалом для лазерных p-n-переходов является арсенид галлия. С помощью p-n-переходов на арсениде галлия в непрерывном режиме можно получать единицы ватт практически монохроматического излучения с длиной волны 8400 Å при температуре жидкого азота. При комнатной температуре длина волны увеличивается до 9000 Å.

Инверсная заселенность в полупроводниках может создаваться не только путем инжекции, но и другими способами, например возбуждением электронов с помощью электронного луча.

Охарактеризуем квантовые процессы испускания и поглощения фотонов атомами. Фотоны испускаются только возбужденными атомами. Излучая фотон, атом теряет энергию, причем величина этой потери связана с частотой фотона соотношением (3.12.7). Если атом, по каким – либо причинам (например, из – за соударения с другим атомом) переходит в возбужденное состояние, это состояние является неустойчивым. Поэтому атом возвращается в состояние с меньшей энергией, излучая фотон. Такое излучение называется спонтанным или самопроизвольным. Таким образом, спонтанное излучение происходит без внешнего воздействия и обусловлено только неустойчивостью возбужденного состояния. Различные атомы спонтанно излучают независимо один от другого и генерируют фотоны, которые распространяются в самых разных направлениях. Кроме того, атом может быть возбужден в разные состояния, поэтому излучает фотоны разных частот. Поэтому эти фотоны некогерентны.

Если атомы находятся в световом поле, то последнее может вызывать переходы как с низшего уровня на высший, сопровождающиеся поглощением фотона, так и наоборот с излучением фотона. Излучение, вызванное воздействием на атом сторонней электромагнитной волны с резонансной частотой, для которой выполняется равенство (3.12.7), называется индуцированным или вынужденным. В отличие от спонтанного в каждом акте индуцированного излучения участвуют два фотона. Один из них распространяется от стороннего источника и воздействует на атом, а другой испускается атомом в результате этого воздействия. Характерной чертой индуцированного излучения является точное совпадение состояния испущенного фотона с состоянием внешнего. Оба фотона имеют одинаковые волновые векторы и поляризации, у обоих фотонов одинаковы также частоты и фазы. Это означает, что фотоны индуцированного излучения всегда когерентны с фотонами, вызвавшими это излучение. Находящиеся в световом поле атомы могут также поглощать фотоны, в результате чего атомы возбуждаются. Резонансное поглощение фотонов атомами всегда является индуцированным процессом, происходящим только в поле внешнего излучения. В каждом акте поглощения исчезает один фотон, а атом переходит в состояние с бóльшей энергией.

Какие процессы будут преобладать при взаимодействии атомов с излучением, испускание или поглощение фотонов, будет зависеть от количества атомов, имеющих большую или меньшую энергию.

Эйнштейн применил к описанию процессов спонтанного и вынужденного излучения вероятностные методы. Исходя из термодинамических соображений, он доказал, что вероятность вынужденных переходов, сопровождающихся излучением, должна быть равна вероятности вынужденных переходов, сопровождающихся поглощением света. Таким образом, вынужденные переходы могут с равной вероятностью происходить как в одном, так и в другом направлении.

Рассмотрим теперь много одинаковых атомов в световом поле, которое будем полагать изотропным и неполяризованным. (Тогда отпадает вопрос о зависимости вводимых ниже коэффициентов от поляризации и направления излучения.) Пусть и числа атомов в состояниях с энергиями и , причем эти состояния могут быть взяты какими угодно из ряда допустимых состояний, но . и принято называть заселенностью энергетических уровней. Число переходов атомов из состояния в состояние в единицу времени при спонтанном излучении будет пропорционально числу атомов в состоянии :

Число переходов атомов между теми же состояниями при индуцированном излучении будет также пропорционально заселенности п – ого уровня, но еще спектральной плотности энергии излучения, в поле которого находятся атомы :

Число же переходов с т – ого на п – ый уровень за счет взаимодействия с излучением

Величины называются коэффициентами Эйнштейна.

Равновесие между веществом и излучением будет достигнуто при условии, что число атомов, совершающих в единицу времени переход из состояния п в состояние т будет равно числу атомов, совершающих переход в обратном направлении:

Как уже говорилось, вероятность вынужденных переходов в одном и другом направлениях одинакова. Поэтому .

Тогда из (3.16.4) можно найти плотность энергии излучения

Равновесное распределение атомов по состояниям с различной энергией определяется законом Больцмана

Тогда из (3.16.5) получим

Что хорошо согласуется с формулой Планка (3.10.23). Это согласие приводит к заключению о существовании индуцированного излучения.

Лазеры.

В 50 – х годах двадцатого века были созданы устройства, при прохождении через которые электромагнитные волны усиливаются за счет вынужденного излучения. Сначала были созданы генераторы, работавшие в диапазоне сантиметровых волн, а несколько позднее был создан аналогичный прибор, работающий в оптическом диапазоне. Он был назван по первым буквам английского названия Light Amplification by Stimulated Emission of Radiation (усиление света с помощью вынужденного излучения) – лазер. Лазеры называют также оптическими квантовыми генераторами.

Чтобы при прохождении вещества интенсивность излучения возрастала, необходимо чтобы для каждой пары атомных состояний, переходы между которыми происходят с испусканием и поглощением фотонов, заселенность состояния с большей энергией была больше заселенности состояния с меньшей энергией. Это означает, что тепловое равновесие должно быть нарушено. Говорят, что вещество, в котором состояние атомов с более высокой энергией заселено больше, чем состояние с меньшей энергией, обладает инверсией заселенностей.

Проходя через вещество с инверсией заселенностей двух атомных состояний, излучение обогащается фотонами, вызывающими переходы между этими атомными состояниями. В результате происходит когерентное усиление излучения на определенной частоте, когда преобладает индуцированное испускание фотонов над их поглощением при переходах атомов между состояниями с инверсией заселенностей. Вещество с инверсией заселенностей называют активной средой.

Чтобы создать состояние с инверсией заселенностей, необходимо затрачивать энергию, расходуя ее на преодоление процессов, восстанавливающих равновесное распределение. Такое воздействие на вещество называется накачкой. Энергия накачки всегда поступает от внешнего источника к активной среде.

Существуют различные способы накачки. Для создания инверсии заселенностей уровней в лазерах наиболее часто используется метод трех уровней. Рассмотрим суть этого метода на примере рубинового лазера.

Рубин представляет собой окись алюминия, в которой некоторые из атомов алюминия замещены атомами хрома. Энергетический спектр атомов (ионов) хрома содержит три уровня (рис.3.16.1) с энергиями , и . Верхний уровень на самом деле представляет собой достаточно широкую полосу, образованную совокупностью близко расположенных уровней.

Р

Главная особенность трехуровневой системы состоит в том, что уровень 2, расположенный ниже уровня 3, должен быть метастабильным уровнем. Это означает, что переход в такой системе запрещен законами квантовой механики. Этот запрет связан с нарушением правил отбора квантовых чисел для такого перехода. Правила отбора не являются правилами абсолютного запрета перехода . Однако, их нарушение для некоторого квантового перехода значительно уменьшает его вероятность. Попав в такое метастабильное состояние, атом задерживается в нем. При этом время жизни атома в метастабильном состоянии () в сотни тысяч раз превышает время жизни атома в обычном возбужденном состоянии (). Это обеспечивает возможность накопления возбужденных атомов с энергией . Поэтому создается инверсная заселенность уровней 1 и 2.

Процесс поэтому происходит следующим образом. Под действием зеленого света лампы – вспышки ионы хрома переходят из основного состояния в возбужденное . Обратный переход происходит в два этапа. На первом этапе возбужденные ионы отдают часть своей энергии кристаллической решетке и переходят в метастабильное состояние . Создается инверсная заселенность этого состояния. Если теперь в рубине, который приведен в такое состояние, появится фотон с длиной волны 694,3нм (например, в результате спонтанного перехода с уровня на ), то индуцированное излучение приведет к размножению фотонов, точно копирующих первоначальный (когерентных) . Этот процесс носит лавинообразный характер и приводит к возникновению очень большого числа только тех фотонов, которые распространяются под малыми углами к оси лазера. Такие фотоны, многократно отражаясь от зеркал оптического резонатора лазера, проходят в нем большой путь и, следовательно, очень много раз встречаются с возбужденными ионами хрома, вызывая их индуцированные переходы. Поток фотонов при этом распространяется узким пучком ,

Рубиновые лазеры работают в импульсном режиме. В 1961 г. был создан первый газовый лазер на смеси гелия и неона, работающий в непрерывном режиме. Затем были созданы полупроводниковые лазеры. В настоящее время список лазерных материалов насчитывает много десятков твердых и газообразных веществ.

Свойства лазерного излучения.

Лазерное излучение обладает свойствами, которых нет у излучения обычных (не лазерных) источников.

1. Излучение лазеров обладает высокой степенью монохроматичности. Интервал длин волн такого излучения составляет ~ 0,01нм.

2. Для излучения лазера характерна высокая временная и пространственная когерентность. Время когерентности такого излучения достигает секунд (длина когерентности порядка м), что примерно в раз больше времени когерентности обычного источника. Пространственная когерентность у выходного отверстия лазера сохраняется по всему сечению луча. С помощью лазера удается получить свет, объем когерентности которого в раз превышает объем когерентности световых волн той же интенсивности, полученных от самых монохроматических нелазерных источников. Поэтому излучение лазеров используют в голографии, где нужно излучение с высокой степенью когерентности.

Переход возбужденной системы (атома, молекулы) с верхних энергетических уровней на нижние может происходить либо спонтанно, либо индуцированно.

Спонтанным называется самопроизвольный (самостоятельный) переход, обусловленный только факторами, действующими внутри системы и свойственными ей. Эти факторы определяют среднее время пребывания системы в возбужденном состоянии; согласно соотношению Гейзенберга (см. § 11),

Теоретически это время может иметь различные значения в пределах:

т. е. зависит от свойств системы - разброса значений энергии возбужденного состояния (за характеристику системы обычно принимается среднее значение времени пребывания в возбужденных состояниях в зависимости от среднего значения Следует учесть также воздействие на систему окружающего пространства («физического вакуума»), в котором даже в отсутствие электромагнитных волн существует, согласно квантовой теории, флуктуирующее поле («вакуумные флуктуации»); это поле может стимулировать переход бужденной системы к низшим уровням и должно быть включено в число неустранимых факторов, вызывающих спонтанные переходы.

Индуцированным называется вынужденный (стимулированный) переход в энергетически низшее состояние, вызванное каким-нибудь внешним воздействием на возбужденную систему: тепловыми столкновениями, взаимодействием с соседними частицами или проходящей через систему электромагнитной волной. Однако в литературе установилось более узкое определение: индуцированным называется переход, вызванный только электромагнитной волной, причем той же частоты, которая излучается системой при этом переходе (поля других частот не будут резонировать с собственными колебаниями системы,

поэтому их стимулирующее действие будет слабым). Так как «носителем» электромагнитного поля является фотон, то из этого определения следует, что при индуцированном излучении внешний фотон, стимулирует рождение нового фотона такой же частоты (энергии).

Рассмотрим важнейшие особенности спонтанного и индуцированного переходов на одном простом идеализированном примере. Допустим, что в объеме V с зеркальными стенками имеется одинаковых систем (атомов, молекул), из которых в начальный фиксированный момент времени некоторая часть переведена в возбужденное состояние с энергией суммарная избыточная энергия в этом объеме будет равна Для спонтанных переходов характерно следующее:

1) процесс перехода возбужденных систем в нормальные состояния (т. е. излучение избыточной энергии растянут во времени. Одни системы пребывают в возбужденном состоянии малое время для других это время больше. Поэтому поток (мощность) излучения будет с течением времени изменяться, достигнет максимума в некоторый момент и затем будет асимптотически убывать до нуля. Среднее значение потока излучения будет равно

2) момент времени, когда начинается излучение одной системы, и местонахождение этой системы совершенно не связаны с моментом излучения и местонахождением другой, т. е. между излучающими системами нет «согласованности» (корреляции) ни в пространстве, ни во времени. Спонтанные переходы являются совершенно случайными процессами, разбросанными во времени, по объему среды и по всевозможным направлениям; плоскости поляризации и электромагнитных излучений от различных систем имеют вероятностный разброс, поэтому сами излучатели не являются источниками когерентных волн.

Для характеристики индуцированных переходов допустим, что в рассматриваемый объем V в момент времени вводится один фотон с энергией, в точности равной Имеется некоторая вероятность того, что этот фотон при одном из столкновений с невозбужденной системой поглотится ею; эта вероятность будет учтена ниже в более общем случае (когда в объеме V происходит взаимодействие рассматриваемых систем с фотонным газом). Будем полагать, что фотон не поглощается, многократно отражается от стенок сосуда и при столкновениях с возбужденными системами стимулирует излучение таких же фотонов, т. е. вызывает индуцированные переходы. Однако каждый появившийся при этих переходах новый фотон будет также возбуждать индуцированные переходы. Так как скорости фотонов велики, а размеры объема V малы, то понадобится очень малое время для того, чтобы все имеющиеся в начальный момент времени возбужденные системы были вынуждены перейти в нормальное состояние. Следовательно, для индуцированных переходов характерно следующее:

1) время необходимое для излучения избыточной энергии может быть регулируемо и сделано очень малым, поэтому поток излучения может быть очень большим;

2) кроме того, фотон, вызвавший переход, и фотон такой же энергии (частоты), появившийся при этом переходе, находятся в одинаковой фазе, имеют одинаковые поляризацию и направление движения. Следовательно, электромагнитные волны, образующиеся при индуцированном излучении, когерентны.

Однако не каждое столкновение фотона с возбужденной системой приводит к ее переходу в нормальное состояние, т. е. вероятность индуцированного перехода в каждом «акте взаимодействия» фотона с системой не равна единице. Обозначим эту вероятность через Допустим, что в данный момент времени в объеме V имеется фотонов и каждый из них в среднем может иметь столкновений в единицу времени. Тогда число индуцированных переходов в единицу времени , следовательно, и число появившихся фотонов в объеме V будет равно

Обозначим число возбужденных систем в объеме V через Число столкновений фотонов с возбужденными системами будет пропорционально концентрации таких систем, т. е. Тогда может быть выражено в зависимости от :

где шинд учитывает все другие факторы, кроме числа фотонов и числа возбужденных систем

Увеличение числа фотонов в объеме V будет происходить также и вследствие спонтанного излучения. Вероятность спонтанного перехода есть обратная величина среднего времени пребывания в возбужденном состоянии Следовательно, число фотонов, появляющихся в единицу времени вследствие спонтанных переходов, будет равно

Уменьшение числа фотонов в объеме V будет происходить в результате их поглощения невозбужденными системами (при этом будет увеличиваться число возбужденных систем). Так как не каждый «акт взаимодействия» фотона с системой сопровождается поглощением, то следует ввести вероятность реализации поглощения Число столкг новений в единицу времени одного фотона с невозбужденными системами будет пропорционально числу таких систем поэтому по аналогии с (2.83) можно для убыли фотонов написать:

Найдем разность между интенсивностями процессов излучения и поглощения фотонов, т. е. процессов перехода систем из высших уровней на низшие и обратно:

В зависимости от значения в рассматриваемом объеме могут происходить следующие изменения;

1) если то в этом объеме будет происходить постепенное уменьшение плотности фотонного газа, т. е. поглощение лучистой энергии. Необходимым условием для этого является малая концентрация возбужденных систем: Лвозб

2) если то в системе установится равновесное состояние при некоторой определенной концентрации возбужденных систем и плотности лучистой энергии;

3) если (что возможно при больших значениях то в рассматриваемом объеме будет происходить увеличение плотности фотонного газа (лучистой энергии).

Очевидно, что уменьшение или увеличение энергии излучения будет иметь место не только в изолированном объеме с отражающими стенками, но и в том случае, когда поток монохроматической лучистой энергии (поток фотонов частотой распространяется в среде, содержащей возбужденные частицы избыточной энергией

Найдем относительное изменение числа фотонов, приходящееся на один фотон и на одну систему; воспользовавшись (2.86), (2.83), (2.84) и (2.85), получим

Заметим, что в равновесном состоянии (которое возможно только при положительной температуре согласно формуле (2.42), приведенной в § 12, отношение равно

Статистическая сумма в знаменателе в данном случае состоит только из двух слагаемых, соответствующих: 1) системам в нормальных состояниях с энергией и 2) возбужденным системам о энергией Из этой формулы следует, что при бесконечно большой положительной температуре Это означает, что путем повышения температуры невозможно достигнуть состояния, при котором число возбужденных систем было бы больше числа невозбужденных. было больше, чем Мневозб, т. е. необходимо, чтобы число фотонов, появляющихся при переходах на низшие уровни, было больше числа фотонов, поглощаемых за то же время). Выше было указано, что такое состояние не может быть достигнуто повышением температуры. Поэтому для получения среды, способной усиливать проходящий через нее лучистый поток, необходимо использовать другие (не температурные) способы возбуждения атомов и молекул.

Можно показать, что может быть больше (т. е. N) только при отрицательной температуре, т. е. при неравновесном состоянии рассматриваемой среды. Если, кроме того, это неравновесное состояние является метастабильным (см. ч. II, § 3), то можно при помощи подходящего внешнего воздействия вызвать скачкообразный переход к равновесному состоянию освобождением избыточной энергии за очень короткое время. Эта идея и лежит в основе работы лазеров.

Состояние среды, при котором верхние энергетические уровни имеют большие коэффициенты заполнения по сравнению с низшими, называется инверсионным. Так как в этом состоянии среда не ослабляет, как обычно, а усиливает проходящее через нее излучение, то в формуле для изменения интенсивности лучистого потока в среде

коэффициент будет отрицательной величиной (следовательно, показатель степени - положительной величиной). Ввиду этого среду в инверсионном состоянии называют средой с отрицательным показателем поглощения. Возможность получения таких сред, их свойства и использование для усиления оптического излучения были установлены и разработаны В. А. Фабрикантом и его сотрудниками (1939-1951).

Спонтанное излучение.

Рассмотрим в некоторой среде два энергетических уровня 1 и2 с энергиями и ( < ).Предположим, что атом или молекула вещества находится первоначально в состоянии соответствующая уровню 2 .Поскольку < атом будет стремится перейти на уровень 1.Следовательно, из атома должна соответствующая разность энергий - .Когда эта энергия высвобождается в виде электромагнитной волны, процесс называется спонтанным излучением. При этом частота излучаемой волны опред-ся формулой (полученной Планком):

Т.о. спонтанное излучение хар-ся испусканием фотона с энергией - при переходе атома с уровня 2 на 1.(рис.)

Вероятность спонтанного излучения можно опред-ть следующим образом. Предположим,что в момент времени t на уровне 2 находится атомов в единице обьёма. Скорость перехода ( /dt)спонт. Этих атомов в следствии спонтанного излучения на низший уровень,очевидно, пропорционально .Следовательно можно написать:

( /dt)спонт. =A (2)

Множитель А представляет собой вероятность спонтанного излучения и называется коэфиц. Энштейна А.Величину =1\А называют спонтанным временем жизни. Численное значение А () зависит от конкретного перехода, участвующего в излучении.

Вынужденное излучение.

Предположим, что атом нах. на уровни 2 и на вещество падает электромагнитная волна с частотой опред-й выражением (1) - \h (т.е. с частотой равной частоте спонтанно испущенной волны).Поскольку частоты падающей волны и излучения, связанное с атомным переходом, равны друг другу, имеется конечная вероятность того, что падающая волна вызовет переход с 2→1.При этом разность энергий - выделится в виде элект-й волны, которая добавится к падающей.Это и есть явление вынужденного перехода.

Между процессами спонтанного и вынужденного излучения есть существенное отличие. В случае спонтанного излучения атом испускает электромагнитную волну,фаза которой не имеет опред-й связи с фазой волны, излучаемым другим атомом. Более того испущенная волна может иметь любое направление распространения. В случае же вынужденного излучения,поскольку процесс инициируется подающей волной, излучение любого атома добавляется к этой волне в той же фазе. Падающая волна определяет также направление распространения испущенной волны. Процесс вынужденного излучения можно описать с помощью уравнения:

( /dt)вын.= (3)

Где ( /dt)вын.- скорость перехода 2→1 за счёт вынужденного излучения,а .Как и коэ-т А определяемый выражением (2), имеет также размерность (время)^-1.Однако в отличии от А зависит не только от конкретного перехода, но и от интенсивности падающей электромагнитной волны.Точнее,для плоской волны, можно написать:

где F-плотность потока фотонов в падающей волне, -величина имеющая размерность площади (сечение вынужденного излучения) и зависящая от хар-к данного перехода.

4.Поглощение.Коэффициенты поглощения.

Предположим что атом первоначально находится на уровне 1. Если это основной уровень, то атом будет оставаться на нем до тех пор, пока на него не подействует какое-либо внешнее возмущение. Пусть на вещество попадет элетромагнитная волна с частотой , определяемой выражением: 2 - E 1 )/ h .

В таком случае существует конечная вероятность того, что атом перейдет на верхний уровень 2. Разность энергий E 2 - E 1 ,необходимаяя для того, чтобы атом совершил переход, берется из энергии падающей электромагнитной волны. В этом заключается процес поглащения. По аналогии с (dN 2 / dt ) вых = - W 21 N 2 вероятность поглощения W 12 определяется уравнением: dN 1 / dt = - W 12 N 1 , где N 1 – число атомов в еденице объема, которые в данный момент времени находятся на уровне 1. Кроме того, так же, как и в выражении W 21 = 21 F , можно написать: W 12 = 12 F . Здесь 12 некоторая площадь(сечение поглощения), которая зависит только от конкретного перехода. Предположим теперь, что каждому атому можно поставить в соответствие эффективное сечение поглощения фотонов а в том смысле, что если фотон попадает в это сечение, то он будет поглощен атомом. Если площадь поперечного сечения электромагнитной волны в среде обозначить черех S , то число освещенных волной атомов среды в слое толщиной dz равно N 1 Sdz и тогда полное сечение поглощения будет равно а N 1 Sdz . Следовательно, относительное изменение числа фотонов ( dF / F ) в слое толщиной dz среды равно: dF / F = - а N 1 Sdz / S . Видно, что = а , поэтому величине можно придать смысл эффективнорго сечения поглощения. Взаимодействие излучнеия с веществом можно описывать по-другому, определив коэфициент с помощью выражения: = ( N 1 N 2 ). Если N 1 > N 2 , то величина называется коэфициентом поглощения. Коэфициент поглощения можно найти как: (2 2 /3 n 0 c 0 h )( N 1 N 2 ) 2 g t ( ) . Поскольку зависит от населенностей двух уровней, это не самый подходящий параметр для описания взаимодействия в тех случаях, екогда населенности уровней изменяются как например в лазере. Однако достоинством данного параметра является то, что он может быть непосредственно измерен. Действительно, dF = - Fdz . Поэтому, отношение плотности потока фотонов, прошедшего в среду на глубину l , к плотности падающего потока фотонов равно F ( l )/ F (0)= exp (- l ) . Экспериментальные измерения этого отношения при использовании достаточно монохроматического излучения дают значение для этой конкретной длины волны падающего света. Соответствующее сечение перехода получается из выражения = ( N 1 N 2 ) , если известны неселенности N 1 и N 2 . Прибор для измерения коэфициента поглощения называется абсорбционным спектрофотометром.

Зако́н Бугера - Ламберта - Бера - физический закон, определяющий ослабление параллельного монохроматического пучка света при распространении его в поглощающей среде.

Закон выражается следующей формулой:

где I0 - интенсивность входящего пучка, l - толщина слоя вещества, через которое проходит свет, kλ - коэффициент поглощения (не путать с безразмерным показателем поглощения κ, который связан с kλ формулой kλ = 4πκ / λ, где λ - длина волны).

Показатель поглощения характеризует свойства вещества и зависит от длины волны λ поглощаемого света. Эта зависимость называется спектром поглощения вещества.