Презентация на тему "электрический ток в металлах"". Презентация по физике на тему "электрический ток в металлах" Объяснение – на основе квантовой теории

Лектор: к. ф.-м. н., доцент
Веретельник Владимир Иванович

Электрический ток в металлах

1.
2.
3.
4.
5.
Опыт Толмена-Стьюарта.
Классическая теория проводимости
металлов - Теория Друде-Лоренца.
Закон Ома и закон Джоуля- Ленца из
классической теории электропроводности.
Сверхпроводимость.
Электронно-дырочный переход.
Транзисторы.

Электрический ток в металлах

Электрический ток в металлах – это
упорядоченное движение электронов под
действием электрического поля.
Наиболее убедительное доказательство
электронной природы тока в металлах было
получено в опытах с инерцией электронов
(Опыт Толмена и Стьюарта).
Катушка с большим числом витков тонкой
проволоки приводилась в быстрое вращение
вокруг своей оси.
Концы катушки с помощью гибких проводов
были присоединены к чувствительному
баллистическому гальванометру.

Электрический ток в металлах

Раскрученная катушка резко
тормозилась, и в цепи возникал
кратковременных ток, обусловленный
инерцией носителей заряда.
Полный заряд, протекающий по цепи,
измерялся по отбросу стрелки
гальванометра.

Электрический ток в металлах

При торможении вращающейся катушки на каждый
носитель заряда e действует тормозящая сила, которая
играет роль сторонней силы, то есть силы
неэлектрического происхождения.
Сторонняя сила, отнесенная к единице заряда, по
определению является напряженностью Eст поля
сторонних сил:
Следовательно, в цепи при торможении катушки
возникает электродвижущая сила:

Электрический ток в металлах

где l – длина проволоки катушки. За время торможения
катушки по цепи протечет заряд q, равный:
Здесь I – мгновенное значение силы тока в катушке, R –
полное сопротивление цепи, υ0 – начальная линейная
скорость проволоки.
Отсюда удельный заряд e / m свободных носителей тока
в металлах равен:
По современным данным модуль заряда электрона
(элементарный заряд) равен

Электрический ток в металлах

Удельный заряд
Хорошая электропроводность металлов
объясняется высокой концентрацией
свободных электронов, равной по порядку
величины числу атомов в единице объема.
Предположение о том, что за электрический ток
в металлах ответственны электроны, возникло
значительно раньше опытов Толмена и Стюарта.
Еще в 1900 году немецкий ученый П. Друде на
основе гипотезы о существовании свободных
электронов в металлах создал электронную
теорию проводимости металлов.

Электрический ток в металлах

Эта теория получила развитие в работах голландского
физика Х. Лоренца и носит название классической
электронной теории.
Согласно этой теории, электроны в металлах ведут себя
как электронный газ, во многом похожий на идеальный
газ.
Электронный газ заполняет пространство между ионами,
образующими кристаллическую решетку металла
Из-за взаимодействия с ионами электроны могут
покинуть металл, лишь преодолев так называемый
потенциальный барьер.
Высота этого барьера называется работой выхода.
При обычных (комнатных) температурах у электронов не
хватает энергии для преодоления потенциального
барьера.

Электрический ток в металлах

Согласно теории Друде–Лоренца,
электроны обладают такой же средней
энергией теплового движения, как и
молекулы одноатомного идеального
газа.
Это позволяет оценить среднюю
скорость теплового движения
электронов по формулам молекулярнокинетической теории.
При комнатной температуре она
оказывается примерно равной 105 м/с.

Электрический ток в металлах

При наложении внешнего
электрического поля в
металлическом проводнике кроме
теплового движения электронов
возникает их упорядоченное
движение (дрейф), то есть
электрический ток.

Электрический ток в металлах

Оценка величины дрейфовой скорости
показывает, что для металлического
проводника сечением 1 мм2, по которому
течет ток 10 А, эта величина лежит в
пределах 0,6–6 мм/c.
Таким образом, средняя скорость
упорядоченного движения электронов в
металлических проводниках на много
порядков меньше средней скорости их
теплового движения.

Электрический ток в металлах

Малая скорость дрейфа на противоречит
опытному факту, что ток во всей цепи
постоянного тока устанавливается практически
мгновенно.
Замыкание цепи вызывает распространение
электрического поля со скоростью c = 3·108 м/с.
Через время порядка l / с (l – длина цепи)
вдоль цепи устанавливается стационарное
распределение электрического поля и в ней
начинается упорядоченное движение
электронов.

Электрический ток в металлах

В классической электронной теории металлов
предполагается, что движение электронов
подчиняется законам механики Ньютона.
В этой теории пренебрегают взаимодействием
электронов между собой, а их взаимодействие
с положительными ионами сводят только к
соударениям.
Предполагается также, что при каждом
соударении электрон передает решетке всю
накопленную в электрическом поле энергию и
поэтому после соударения он начинает
движение с нулевой дрейфовой скоростью.

Электрический ток в металлах

Несмотря на то, что все эти допущения являются
весьма приближенными, классическая электронная
теория качественно объясняет законы электрического
тока в металлических проводниках.
Закон Ома. В промежутке между соударениями на
электрон действует сила, равная по модулю eE, в
результате чего он приобретает ускорение
Поэтому к концу свободного пробега дрейфовая
скорость электрона равна

Электрический ток в металлах

где τ – время свободного пробега,
которое для упрощения расчетов
предполагается одинаковым для всех
электронов.
Среднее значение скорости дрейфа
равно половине максимального
значения:

Электрический ток в металлах

Рассмотрим проводник длины l и сечением S с
концентрацией электронов n.
Ток в проводнике может быть записан в виде:
где U = El – напряжение на концах проводника.
Полученная формула выражает закон Ома для
металлического проводника.
Электрическое сопротивление проводника
равно:

Электрический ток в металлах

Удельное сопротивление ρ и удельная
проводимость σ выражаются
соотношениями:
Закон Джоуля–Ленца. К концу
свободного пробега электроны
приобретают под действием поля
кинетическую энергию

Электрический ток в металлах

Согласно сделанным предположениям,
вся эта энергия передается решетке при
соударении и переходит в тепло.
За время Δt каждый электрон
испытывает Δt / τ соударений.
В проводнике сечением S и длины l
имеется nSl электронов.
Отсюда следует, что выделяемое в
проводнике за время Δt тепло равно:

Электрический ток в металлах

Это соотношение выражает
закон Джоуля–Ленца.
Таким образом, классическая электронная
теория объясняет существование
электрического сопротивления металлов,
законы Ома и Джоуля–Ленца.
Однако в ряде вопросов классическая
электронная теория приводит к выводам,
находящимся в противоречии с опытом.

Электрический ток в металлах

Эта теория не может, например, объяснить, почему
молярная теплоемкость металлов, также как и молярная
теплоемкость диэлектрических кристаллов, равна 3R,
где R – универсальная газовая постоянная (закон
Дюлонга и Пти.)
Классическая электронная теория не может также
объяснить температурную зависимость удельного
сопротивления металлов.
Теория дает
в то время как из эксперимента
получается зависимость ρ ~ T.
Однако наиболее ярким примером расхождения теории и
опытов является сверхпроводимость.

Электрический ток в металлах

При некоторой определенной
температуре Tкр, различной для разных
веществ, удельное сопротивление
скачком уменьшается до нуля.
Критическая температура у ртути равна
4,1 К, у алюминия 1,2 К, у олова 3,7 К.
Сверхпроводимость наблюдается не
только у элементов, но и у многих
химических соединений и сплавов.

Электрический ток в металлах

Например, соединение ниобия с оловом
(Ni3Sn) имеет критическую температуру
18 К.
Некоторые вещества, переходящие при
низких температурах в сверхпроводящее
состояние, не являются проводниками
при обычных температурах.
В то же время такие «хорошие»
проводники, как медь и серебро, не
становятся сверхпроводниками при
низких температурах.

Электрический ток в металлах

Вещества в сверхпроводящем
состоянии обладают
исключительными свойствами.
Практически наиболее важным их
них является способность
длительное время (многие годы)
поддерживать без затухания
электрический ток, возбужденный в
сверхпроводящей цепи.

Электрический ток в металлах

Классическая электронная теория не
способна объяснить явление
сверхпроводимости. Объяснение
механизма этого явления было дано
только через 60 лет после его открытия
на основе квантово-механических
представлений.
Научный интерес к сверхпроводимости
возрастал по мере открытия новых
материалов с более высокими
критическими температурами.

Электрический ток в металлах

Значительный шаг в этом направлении произошел в
1986 году, когда было обнаружено, что у одного сложного
керамического соединения Tкр = 35 K.
Уже в следующем 1987 году физики сумели создать
новую керамику с критической температурой 98 К,
превышающей температуру жидкого азота (77 К).
Явление перехода веществ в сверхпроводящее
состояние при температурах, превышающих температуру
кипения жидкого азота, было названо
высокотемпературной сверхпроводимостью.
В 1988 году было создано керамическое соединение на
основе элементов Tl–Ca–Ba–Cu–O с критической
температурой 125 К.
Следует отметить, что до настоящего времени механизм
высокотемпературной сверхпроводимости керамических
материалов до конца не выяснен.

1.
2.
3.
4.
Качественное отличие полупроводников от
металлов.
Электронно-дырочный механизм
проводимости чистых беспримесных
полупроводников.
Электронная и дырочная проводимость
примесных полупроводников. Донорные и
акцепторные примеси.
Электронно-дырочный переход.
Полупроводниковый диод. Транзистор.

Электрический ток в полупроводниках

К числу полупроводников относятся
многие химические элементы (германий,
кремний, селен, теллур, мышьяк и др.),
огромное количество сплавов и
химических соединений.
Почти все неорганические вещества
окружающего нас мира –
полупроводники.
Самым распространенным в природе
полупроводником является кремний,
составляющий около 30 % земной коры.

Электрический ток в полупроводниках

Качественное отличие
полупроводников от металлов
проявляется прежде всего в
зависимости удельного
сопротивления от температуры.

Электрический ток в полупроводниках

Такой ход зависимости ρ(T) показывает,
что у полупроводников концентрация
носителей свободного заряда не
остается постоянной, а увеличивается с
ростом температуры.
Рассмотрим качественно этот механизм
на примере германия (Ge).
В кристалле кремния (Si) механизм
аналогичен.

Электрический ток в полупроводниках

Атомы германия имеют четыре слабо
связанных электрона на внешней оболочке.
Их называют валентными электронами.
В кристаллической решетке каждый атом
окружен четырьмя ближайшими соседями.
Связь между атомами в кристалле германия
является ковалентной, т. е. осуществляется
парами валентных электронов.
Каждый валентный электрон принадлежит двум
атомам.

Электрический ток в полупроводниках

Валентные электроны в кристалле германия
гораздо сильнее связаны с атомами, чем в
металлах.
Поэтому концентрация электронов
проводимости при комнатной температуре в
полупроводниках на много порядков меньше,
чем у металлов.
Вблизи абсолютного нуля температуры в
кристалле германия все электроны заняты в
образовании связей.
Такой кристалл электрического тока не
проводит.

Электрический ток в полупроводниках

Парно-электронные связи в кристалле
германия и образование электроннодырочной пары.

Электрический ток в полупроводниках

При повышении температуры некоторая
часть валентных электронов может
получить энергию, достаточную для
разрыва ковалентных связей.
Тогда в кристалле возникнут свободные
электроны (электроны проводимости).
Одновременно в местах разрыва связей
образуются вакансии, которые не заняты
электронами.
Эти вакансии получили название
«дырок».

Электрический ток в полупроводниках

Вакантное место может быть занято
валентным электроном из соседней
пары, тогда дырка переместиться на
новое место в кристалле.
Если полупроводник помещается в
электрическое поле, то в упорядоченное
движение вовлекаются не только
свободные электроны, но и дырки,
которые ведут себя как положительно
заряженные частицы.

Электрический ток в полупроводниках

Поэтому ток I в полупроводнике
складывается из электронного In и
дырочного Ip токов:
I = In + Ip.
Электронно-дырочный механизм
проводимости проявляется только
у чистых (т. е. без примесей)
полупроводников. Он называется
собственной электрической
проводимостью полупроводников.

Электрический ток в полупроводниках

При наличии примесей
электропроводимость полупроводников
сильно изменяется.
Например, добавка примесей фосфора в
кристалл кремния в количестве 0,001
атомного процента уменьшает удельное
сопротивление более чем на пять
порядков.
Такое сильное влияние примесей может
быть объяснено на основе изложенных
выше представлений о строении
полупроводников.

Электрический ток в полупроводниках

Необходимым условием резкого
уменьшения удельного сопротивления
полупроводника при введении примесей
является отличие валентности атомов
примеси от валентности основных
атомов кристалла.
Проводимость полупроводников при
наличии примесей называется
примесной проводимостью.

Электрический ток в полупроводниках

Различают два типа примесной
проводимости – электронную и
дырочную проводимости.
Электронная проводимость
возникает, когда в кристалл
германия с четырехвалентными
атомами введены пятивалентные
атомы (например, атомы мышьяка,
As).

Электрический ток в полупроводниках

Электрический ток в полупроводниках

Электрический ток в полупроводниках

Четыре валентных электрона атома мышьяка
включены в образование ковалентных связей с
четырьмя соседними атомами германия.
Пятый валентный электрон оказался излишним.
Он легко отрывается от атома мышьяка и
становится свободным.
Атом, потерявший электрон, превращается в
положительный ион, расположенный в узле
кристаллической решетки.

Электрический ток в полупроводниках

Примесь из атомов с валентностью,
превышающей валентность основных атомов
полупроводникового кристалла, называется
донорской примесью.
В результате ее введения в кристалле
появляется значительное число свободных
электронов.
Это приводит к резкому уменьшению удельного
сопротивления полупроводника – в тысячи и
даже миллионы раз.
Удельное сопротивление проводника с
большим содержанием примесей может
приближаться к удельному сопротивлению
металлического проводника.

Электрический ток в полупроводниках

Такая проводимость,
обусловленная свободными
электронами, называется
электронной, а полупроводник,
обладающий электронной
проводимостью, называется
полупроводником n-типа.

Электрический ток в полупроводниках

Дырочная проводимость возникает, когда в
кристалл германия введены трехвалентные
атомы (например, атомы индия, In).

Электрический ток в полупроводниках

На рис. показан атом индия, который создал с
помощью своих валентных электронов
ковалентные связи лишь с тремя соседними
атомами германия.
На образование связи с четвертым атомом
германия у атома индия нет электрона.
Этот недостающий электрон может быть
захвачен атомом индия из ковалентной связи
соседних атомов германия.
В этом случае атом индия превращается в
отрицательный ион, расположенный в узле
кристаллической решетки, а в ковалентной
связи соседних атомов образуется вакансия.

Электрический ток в полупроводниках

Примесь атомов, способных захватывать
электроны, называется акцепторной
примесью.



В результате введения акцепторной примеси в
кристалле разрывается множество ковалентных
связей и образуются вакантные места (дырки).
На эти места могут перескакивать электроны из
соседних ковалентных связей, что приводит к
хаотическому блужданию дырок по кристаллу.

Электрический ток в полупроводниках

Концентрация дырок в полупроводнике с
акцепторной примесью значительно
превышает концентрацию электронов, которые
возникли из-за механизма собственной
электропроводности полупроводника: np >> nn.
Проводимость такого типа называется
дырочной проводимостью.
Примесный полупроводник с дырочной
проводимостью называется полупроводником
p-типа.
Основными носителями свободного заряда в
полупроводниках p-типа являются дырки.

Электрический ток в полупроводниках

Следует подчеркнуть, что дырочная
проводимость в действительности
обусловлена эстафетным перемещением
по вакансиям от одного атома германия к
другому электронов, которые
осуществляют ковалентную связь.
Для полупроводников n- и p-типов закон
Ома выполняется в определенных
интервалах сил тока и напряжений при
условии постоянства концентраций
свободных носителей.

В современной электронной технике
полупроводниковые приборы играют
исключительную роль.
За последние три десятилетия они почти
полностью вытеснили электровакуумные
приборы.
В любом полупроводниковом приборе имеется
один или несколько электронно-дырочных
переходов.
Электронно-дырочный переход (или n–pпереход) – это область контакта двух
полупроводников с разными типами
проводимости.

Электронно-дырочный переход. Транзистор

При контакте двух полупроводников n- и
p-типов начинается процесс диффузии:
дырки из p-области переходят в nобласть, а электроны, наоборот, из nобласти в p-область.
В результате в n-области вблизи зоны
контакта уменьшается концентрация
электронов и возникает положительно
заряженный слой.
В p-области уменьшается концентрация
дырок и возникает отрицательно
заряженный слой.

Электронно-дырочный переход. Транзистор

Таким образом, на границе полупроводников
образуется двойной электрический слой,
электрическое поле которого препятствует
процессу диффузии электронов и дырок
навстречу друг другу

Электронно-дырочный переход. Транзистор

n–p-переход обладает удивительным
свойством односторонней
проводимости.
Если полупроводник с n–p-переходом
подключен к источнику тока так, что
положительный полюс источника
соединен с n-областью, а
отрицательный – с p-областью, то
напряженность поля в запирающем слое
возрастает.

Электронно-дырочный переход. Транзистор

Дырки в p-области и электроны в nобласти будут смещаться от n–pперехода, увеличивая тем самым
концентрации неосновных носителей в
запирающем слое.
Ток через n–p-переход практически не
идет.
Напряжение, поданное на n–p-переход в
этом случае называют обратным.

Электронно-дырочный переход. Транзистор

Весьма незначительный обратный
ток обусловлен только собственной
проводимостью
полупроводниковых материалов,
т. е. наличием небольшой
концентрации свободных
электронов в p-области и дырок в
n-области.

Электронно-дырочный переход. Транзистор

Если n–p-переход соединить с
источником так, чтобы положительный
полюс источника был соединен с pобластью, а отрицательный с nобластью, то напряженность
электрического поля в запирающем слое
будет уменьшаться, что облегчает
переход основных носителей через
контактный слой.

Электронно-дырочный переход. Транзистор

Дырки из p-области и электроны из
n-области, двигаясь навстречу друг
другу, будут пересекать n–pпереход, создавая ток в прямом
направлении.
Сила тока через n–p-переход в этом
случае будет возрастать при
увеличении напряжения источника.

Электронно-дырочный переход. Транзистор

Способность n–p-перехода пропускать
ток практически только в одном
направлении используется в приборах,
которые называются
полупроводниковыми диодами.
Полупроводниковые диоды
изготавливаются из кристаллов кремния
или германия.
При их изготовлении в кристалл c какимлибо типом проводимости вплавляют
примесь, обеспечивающую другой тип
проводимости.

Электронно-дырочный переход. Транзистор

Типичная вольт-амперная
характеристика кремниевого диода

Электронно-дырочный переход. Транзистор

Полупроводниковые приборы не с
одним, а с двумя n–p-переходами
называются транзисторами.
Транзисторы бывают двух типов:
p–n–p-транзисторы и n–p–nтранзисторы.

Электронно-дырочный переход. Транзистор

Например, германиевый транзистор
p–n–p-типа представляет собой
небольшую пластинку из германия
с донорной примесью, т. е. из
полупроводника n-типа.
В этой пластинке создаются две
области с акцепторной примесью,
т. е. области с дырочной
проводимостью.

Электронно-дырочный переход. Транзистор

В транзисторе n–p–n-типа основная
германиевая пластинка обладает
проводимостью p-типа, а созданные на
ней две области – проводимостью nтипа.
Пластинку транзистора называют базой
(Б), одну из областей с
противоположным типом проводимости
– коллектором (К), а вторую –
эмиттером (Э).

Электронно-дырочный переход. Транзистор

1.
2.
3.
4.
Электролиты. Носители зарядов в
электролитах.
Электролиз. Электролитическая
диссоциация.
Закон Фарадея для электролиза.
Объединенный закон Фарадея для
электролиза.

Электрический ток в электролитах

Электролитами принято называть
проводящие среды, в которых
протекание электрического тока
сопровождается переносом
вещества.
Носителями свободных зарядов в
электролитах являются
положительно и отрицательно
заряженные ионы.

Электрический ток в электролитах

Основными представителями
электролитов, широко используемыми в
технике, являются водные растворы
неорганических кислот, солей и
оснований.
Прохождение электрического тока через
электролит сопровождается выделением
веществ на электродах.
Это явление получило название
электролиза.

Электрический ток в электролитах

Электрический ток в электролитах
представляет собой перемещение ионов обоих
знаков в противоположных направлениях.
Положительные ионы движутся к
отрицательному электроду (катоду),
отрицательные ионы – к положительному
электроду (аноду).
Ионы обоих знаков появляются в водных
растворах солей, кислот и щелочей в
результате расщепления части нейтральных
молекул.
Это явление называется электролитической
диссоциацией.

Электрический ток в электролитах

Например, хлорид меди CuCl2
диссоциирует в водном растворе на
ионы меди и хлора:
При подключении электродов к
источнику тока ионы под действием
электрического поля начинают
упорядоченное движение:
положительные ионы меди движутся к
катоду, а отрицательно заряженные
ионы хлора – к аноду.

Электрический ток в электролитах

Достигнув катода, ионы меди нейтрализуются
избыточными электронами катода и
превращаются в нейтральные атомы,
оседающие на катоде.
Ионы хлора, достигнув анода, отдают но
одному электрону.
После этого нейтральные атомы хлора
соединяются попарно и образуют молекулы
хлора Cl2.
Хлор выделяется на аноде в виде пузырьков.

Электрический ток в электролитах

Закон электролиза был экспериментально
установлен английским физиком М. Фарадеем в
1833 году.
Закон Фарадея определяет количества
первичных продуктов, выделяющихся на
электродах при электролизе:
Масса m вещества, выделившегося на
электроде, прямо пропорциональна заряду Q,
прошедшему через электролит:
m = kQ = kIt.
Величину k называют электрохимическим
эквивалентом.

Электрический ток в электролитах

Масса выделившегося на электроде вещества
равна массе всех ионов, пришедших к
электроду:
Здесь m0 и q0 – масса и заряд одного иона,
– число ионов, пришедших к электроду при
прохождении через электролит заряда Q.
Таким образом, электрохимический эквивалент
k равен отношению массы m0 иона данного
вещества к его заряду q0.

Электрический ток в электролитах

Так как заряд иона равен произведению
валентности вещества n на
элементарный заряд e (q0 = ne), то
выражение для электрохимического
эквивалента k можно записать в виде:
F = eNA – постоянная Фарадея.
F = eNA = 96485 Кл / моль.

Электрический ток в электролитах

Постоянная Фарадея численно
равна заряду, который необходимо
пропустить через электролит для
выделения на электроде одного
моля одновалентного вещества.
Закон Фарадея для электролиза
приобретает вид:

Контрольные вопросы

1.
2.
3.
4.
5.
6.
Носители зарядов в металлах.
Краткие сведения о классической теории
проводимости металлов (теория Друде-Лоренца).
Закон Ома из классической теории (краткий
вывод).
Закон Джоуля-Ленца из классической теории
проводимости (краткий вывод).
Какие физические проблемы не может объяснить
классическая теория проводимости металлов.
Краткие сведения о сверхпроводимости.

Контрольные вопросы

1.
2.
3.
4.
5.
6.
7.
8.
Электроны и дырки. Как они образуются в чистых
полупроводниках?
Механизм проводимости чистых полупроводников.
Донорные и акцепторные полупроводники.
Механизм проводимости примесных полупроводников.
Как осуществить электронную и дырочную
проводимость в полупроводниках.
Что представляет электронно-дырочный переход?
Объясните, почему электронно-дырочный переход
может выпрямлять переменный ток.
Транзистор.

Контрольные вопросы

Какие носители зарядов есть в
электролитах?
2. Что такое электролиты? Что такое
электролитическая диссоциация?
3. Закон Фарадея для электролиза.
4. Объединенный закон электролиза
Фарадея.

ЭЛЕКТРИЧЕСКИЙ ТОК В МЕТАЛЛАХ

Слайд 2

Основы электронной теории проводимости В начале XX века была создана классическая электронная теория проводимости металлов (П. Друде, 1900 г., Х.Лоренц, 1904 г.), которая дала простое и наглядное объяснение большинства электрических и тепловых свойств металлов. Пауль Друде Карл Людвиг - немецкий физик Хендрик Антон Лоренц- голландский физик

Слайд 3

Движение электронов подчиняется законам классической механики. Электроны друг с другом не взаимодействуют. Электроны взаимодействуют только с ионами кристаллической решётки, взаимодействие это сводится к соударению. В промежутках между соударениями электроны движутся свободно. Электроны проводимости образуют «электронный газ», подобно идеальному газу. «Электронный газ» подчиняется законам идеального газа. При любом соударении электрон передаёт всю накопленную энергию. Классическая электронная теория Друде - Лоренца.

Слайд 4

Электрический ток в металлах Ионы кристаллической решетки металла не принимают участие в создании тока. Их перемещение при прохождении тока означало бы перенос вещества вдоль проводника, что не наблюдается. Например, в опытах Э. Рикке (1901 г.) масса и химический состав проводника не изменялся при прохождении тока в течении года.

Слайд 5

Вывод: Не происходит переноса вещества = > 1) Ионы металла не принимают участия в переносе электрического заряда. 2) Носители заряда - частицы, входящие в состав всех металлов Опыт Рикке 1901 г.

Слайд 6: Электроны взаимодействуют не друг с другом, а с ионами кристаллической решётки. При каждом соударении электрон передаёт свою кинетическую энергию

Слайд 7

Экспериментальное доказательство того, что ток в металлах создается свободными электронами, было дано в опытах Л.И. Мандельштама и Н. Д. Папалекси (1913 г., результаты не были опубликованы), а также Т. Стюарта и Р. Толмена (1916 г.). Они обнаружили, что при резкой остановке быстро вращающейся катушки в проводнике катушки возникает электрический ток, создаваемый отрицательно заряженными частицами - электронами.

Слайд 8

Опыт Мандельштама и Папалекси Вывод: Носители электрического заряда движутся по инерции 1913 г.

Слайд 9

Опыт Толмена и Стюарта Выводы: Носителями заряда в металле являются отрицательно заряженные частицы. Отношение = > Электрический ток в металлах обусловлен движением электронов 1916 г.

10

Слайд 10: Ионы совершают тепловые колебания, вблизи положения равновесия – узлов кристаллической решётки. Свободные электроны движутся хаотично и при своём движении сталкиваются с ионами кристаллической решётки

11

Слайд 11

Металлический проводник состоит из: положительно заряженных ионов, колеблющихся около положения равновесия, и 2) свободных электронов, способных перемещаться по всему объему проводника. В металле в отсутствие электрического поля электроны проводимости хаотически движутся и сталкиваются, чаще всего с ионами кристаллической решетки. Совокупность этих электронов можно приближенно рассматривать как некий электронный газ, подчиняющийся законам идеального газа. Средняя скорость теплового движения электронов при комнатной температуре составляет примерно 105 м/с.

12

Слайд 12

Зависимость сопротивления проводника R от температуры: При нагревании размеры проводника меняются мало, а в основном меняется удельное сопротивление. Удельное сопротивление проводника зависит от температуры: где ро - удельное сопротивление при 0 градусов, t - температура, - температурный коэффициент сопротивления (т.е. относительное изменение удельного сопротивления проводника при нагревании его на один градус)

13

Слайд 13

Для всех металлических проводников α > 0 и слабо изменяется с изменением температуры. Для большинства металлов в интервале температур от 0 ° до 100 °С коэффициент α изменяется от 3,3⋅10–3 до 6,2⋅10–3 К–1 (таблица 1). У химически чистых металлов Существуют специальные сплавы, сопротивление которых практически не изменяется при нагревании, например, манганин и константан. Их температурные коэффициенты сопротивления очень малы и равны соответственно 1⋅10–5 К–1 и 5⋅10–5 К–1.

14

Слайд 14

Таким образом, для металлических проводников с ростом температуры увеличивается удельное сопротивление, увеличивается сопротивление проводника и уменьшается эл.ток в цепи. Сопротивление проводника при изменении температуры можно рассчитать по формуле: R = Ro (1 + t) где Ro - сопротивление проводника при 0 градусов Цельсия t - температура проводника - температурный коэффициент сопротивления

15

Слайд 15: Сопротивление проводника

Сопротивление - это физическая величина, характеризующая степень противодействия проводника направленному движению зарядов. Удельное сопротивление – это сопротивление цилиндрического проводника единичной длины и единичной площади поперечного сечения. Сверхпроводимость – физическое явление, заключающееся в скачкообразном падении сопротивления до нуля при некоторой критической температуре (Т кр) – удельное сопротивление, - длина проводника, S - площадь поперечного сечения = (1 + ∆ Т) - удельное сопротивление при t =20 0 С; - температурный коэффициент сопротивления = 1/ 273 0 К -1 ∆ Т – изменение температуры Т,К 0 металл сверхпроводник Т кр 293

16

Слайд 16

Сверхпроводимость, свойство многих проводников, состоящее в том, что их электрическое сопротивление скачком падает до нуля при охлаждении ниже определённой критической температуры Т к, характерной для данного материала. С. обнаружена у более чем 25 металлических элементов, у большого числа сплавов и интерметаллических соединений, а также у некоторых полупроводников.

17

Слайд 17

В 1911 году голландский физик Камерлинг-Оннес обнаружил, что при охлаждении ртути в жидком гелии её сопротивление сначала меняется постепенно, а затем при температуре 4,2 К резко падает до нуля.

18

Слайд 18

Г. Камерлинг-Оннес был удостоен Нобелевской премии по физике 1913 г. «за исследования свойств вещества при низких температурах». В дальнейшем было выяснено, что более 25 химических элементов - металлов при очень низких температурах становятся сверхпроводниками. У каждого из них своя критическая температура перехода в состояние с нулевым сопротивлением. Самое низкое значение ее у вольфрама - 0,012 К, самое высокое у ниобия - 9 К. Сверхпроводимость наблюдается не только у чистых металлов, но и у многих химических соединений и сплавов. При этом сами элементы, входящие в состав сверхпроводящего соединения, могут и не являться сверхпроводниками. Например, NiBi, Au2Bi, PdTe, PtSb и другие. До 1986 г. были известны сверхпроводники, обладающие этим свойством при очень низких температурах - ниже –259 °С. В 1986-1987 годах были обнаружены материалы с температурой перехода в сверхпроводящее состояние около –173 °С. Это явление получило название высокотемпературной сверхпроводимости, и для его наблюдения можно использовать вместо жидкого гелия жидкий азот.

19

Слайд 19: Сверхпроводимость

Академик В.Л. Гинзбург, нобелевский лауреат за работы по сверхпроводимости

20

Слайд 20: Сверхпроводимость металлов и сплавов

У многих металлов и сплавов при температурах, близких с T =0 К, наблюдается резкое уменьшение удельного сопротивления – это явление называется сверхпроводимостью металлов. Оно было обнаружено голландским физиком Х.Камерлингом – Онессом в 1911 году у ртути (Т кр =4,2 о К). Т P 0

21

Слайд 21: Общие сведения

Свойством сверхпроводимости обладают около половины металлов и несколько сотен сплавов. Сверхпроводящие свойства зависят от типа кристаллической структуры. Изменение её может перевести вещество из обычного в сверхпроводящее состояние. Критические температуры изотопов элементов, переходящих в сверхпроводящее состояние, связаны с массами изотопов соотношением: Т э (М э) 1/2 = const (изотопический эффект) Сильное магнитное поле разрушает эффект сверхпроводимости. Следовательно, при помещении в магнитное поле свойство сверхпроводимости может исчезнуть.

22

Слайд 22: Реакция на примеси

Введение примеси в сверхпроводник уменьшает резкость перехода в сверхпроводящее состояние. В нормальных металлах ток исчезает примерно через 10 -12 с. В сверхпроводнике ток, может циркулировать годами (теоретически 105 лет!).

23

Слайд 23: Физическая природа сверхпроводимости

Явление сверхпроводимости можно понять и обосновать только с помощью квантовых представлений Они были представлены в 1957 году американскими учеными Дж.Бардиным, Л.Купером, Дж.Шриффером и советским академиком Н.Н. Боголюбовым. В 1986 году была открыта высокотемпературная сверхпроводимость соединений лантана, бария и др. элементов (Т= 100 0 К - это температура кипения жидкого азота).

24

Слайд 24

Однако нулевое сопротивление - не единственная отличительная черта сверхпроводимости. Ещё из теории Друде известно, что проводимость металлов увеличивается с понижением температуры, то есть электрическое сопротивление стремится к нулю.

Отталкиваясь от неподвижного сверхпроводника, магнит всплывает сам и продолжает парить до тех пор, пока внешние условия не выведут сверхпроводник из сверхпроводящей фазы. В результате этого эффекта магнит, приближающийся к сверхпроводнику, «увидит» магнит обратной полярности точно такого же размера, что и вызывает левитацию.

27

Слайд 27: Применение сверхпроводимости

1.Сооружаются мощные электромагниты со сверхпроводящей обмоткой, которые создают магнитное поле без затрат электроэнергии на длительном интервале времени, т.к. выделения теплоты не происходит. 2.Сверхпроводящие магниты используются в ускорителях элементарных частиц, магнитогидродинамических игенераторах, преобразующих энергию струи раскаленного ионизированного газа, движущегося в магнитном поле, в электрическую энергию. 3.Высокотемпературная сверхпроводимость в недалеком будущем приведет к технической революции в радиоэлектронике, радиотехнике. 4. Если удастся создать сверхпроводники при комнатной температуре, то генераторы и электродвигатели станут исключительно компактны и передавать электроэнергию будет возможно на большие расстояния без потерь.

28

Последний слайд презентации: ЭЛЕКТРИЧЕСКИЙ ТОК В МЕТАЛЛАХ: Используемые ресурсы:

http://www.physbook.ru/index.php/ Т._Электронная_проводимость_металлов http://class-fizika.narod.ru/10_9.htm

Класс: 11

Презентация к уроку





















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока :

Раскрыть понятие физической природы электрического тока в металлах, опытное подтверждение электронной теории;

Продолжить формирование естественно-научных представлений по изучаемой теме

Создать условия для формирования познавательного интереса, активности учащихся

Формированию навыков;

Формированию коммуникативного общения.

Оборудование: интерактивный комплекс SMART Board Notebook, локальная сеть компьютеров, интернет.

Метод ведения урока: комбинированный.

Эпиграф урока:

Науку все глубже постигнуть стремись,
Познанием вечного жаждой томись.
Лишь первых познаний блеснет тебе свет,
Узнаешь: предела для знания нет.

Фирдоуси
(Персидский и таджикский поэт, 940-1030 гг.)

План урока.

I. Оргмомент

II. Работа в группах

III. Обсуждение итогов, монтаж презентации

IV. Рефлексия

V. Домашнее задание

Ход урока

Здравствуйте, ребята! Садитесь. Сегодня наша работа будет проходить по группам.

Задания группам:

I. Физическая природа зарядов в металлах.

II. Опыт К.Рикке.

III. Опыт Стюарта, Толмена. Опыт Мандельштама, Папалекси.

IV. Теория Друде.

V. Вольт-амперная характеристика металлов. Закон Ома.

VI. Зависимость сопротивления проводников от температуры.

VII. Сверхпроводимость.

1. Электрическая проводимость представляет собой способность веществ проводить электрический ток под действием внешнего электрического поля.

По физической природе зарядов – носителей электрического тока, электропроводность подразделяют на:

А) электронную,

Б) ионную,

В) смешанную.

2. Для каждого вещества при заданных условиях характерна определенная зависимость силы тока от разности потенциалов.

По удельному сопротивлению вещества принято делить на:

А) проводники (p < 10 -2 Ом*м)

Б) диэлектрики (p > 10 -8 Ом*м)

В) полупроводники (10 -2 Ом*м> p>10 -8 Ом*м)

Однако такое деление условно, т. к. под воздействием ряда факторов (нагревания, облучения, примеси) удельное сопротивление веществ и их вольт - амперная характеристикаизменяются, и иногда очень существенно.

3. Носителями свободных зарядов в металлах являются электроны. Доказано классическими опытами К. Рикке (1901 г.) – немецкий физик; Л.И. Мандельштамом и Н. Д. Папалекси (1913 г.) – наши соотечественники; Т. Стюартом и Р. Толменом (1916 г.) – американские физики.

Опыт К. Рикке

Три предварительно взвешенных цилиндра (два медных и один алюминиевый) Рикке сложил отшлифованными торцами так, что алюминиевый оказался между медными. Затем цилиндры были включены в цепь постоянного тока: через них в течение года проходил большой ток. За то время через электрические цилиндры прошел электрический заряд, равный приблизительно 3.5 млн Кл. Вторичное взаимодействие цилиндров, проводившееся с до 0.03 мг, показало, что масса цилиндров в результате опыта не изменилась. При исследовании соприкасавшихся торцов под микроскопом было установлено, что имеются лишь незначительные следы проникновения металлов, которые не превышают результатов обычной диффузии атомов в твердых телах. Результаты опыта свидетельствовали о том, что в переносе заряда в металлах ионы не участвуют.

Л.И. Мандельштам

Н. . Папалекси

Опыт Л. И. Мандельштама и Н. Д. Папалекси

Русские ученые Л. И. Мандельштам (1879-1949; основатель школы радиофизиков) и Н. Д. Папалекси (1880-1947; крупнейший советский физик, академик, председатель Всесоюзного научного совета по радиофизике и радиотехнике при АН СССР) в 1913 году поставили оригинальный опыт. Взяли катушку с проводом и стали крутить ее в разные стороны.

Раскрутят, к примеру, по часовой стрелке, потом резко остановят и - назад.

Рассуждали они примерно так: если электроны и вправду обладают массой, то, когда катушка внезапно останавливается, электроны еще некоторое время должны двигаться по инерции. Движение электронов по проводу - электрический ток. Как задумали, так и получилось. Подсоединили к концам провода телефон и услышали звук. Раз в телефоне слышен звук, следовательно, через него ток протекает.

Т. Стюарт

Опыт Т. Стюарта и Р. Толмен

Возьмём катушку, которая может вращаться вокруг своей оси. Концы катушки с помощью скользящих контактов замкнуты на гальванометр. Если находящуюся в быстром вращении катушку резко затормозить, то свободные электроны в проволоке продолжат двигаться по инерции, в результате чего гальванометр должен зарегистрировать импульс тока.

Теория Друде

Электроны в металле рассматриваются как электронный газ, к которому можно применить кинетическую теорию газов. Считается, что электроны, как и атомы газа в кинетической теории, представляют собой одинаковые твердые сферы, которые движутся по прямым линиям до тех пор, пока не столкнутся друг с другом. Предполагается, что продолжительность отдельного столкновения пренебрежимо мала, и что между молекулами не действует никаких иных сил, кроме возникающих в момент столкновения. Так как электрон - отрицательно заряженная частица, то для соблюдения условия электронейтральности в твердом теле также должны быть частицы другого сорта - положительно заряженные. Друде предположил, что компенсирующий положительный заряд принадлежит гораздо более тяжелым частицам (ионам), которые он считал неподвижными. Во времена Друде не было ясно, почему в металле существуют свободные электроны и положительно заряженные ионы, и что эти ионы из себя представляют. Ответы на эти вопросы смогла дать только квантовая теория твердого тела. Для многих веществ, однако, можно просто считать, что электронный газ составляют слабо связанные с ядром внешние валентные электроны, которые в металле "освобождаются" и получают возможность свободно передвигаться по металлу, тогда как атомные ядра с электронами внутренних оболочек (атомные остовы) остаются неизменными и играют роль неподвижных положительных ионов теории Друде.

Электрический ток в металлах

Все металлы являются проводниками электрического тока и состоят из пространственной кристаллической решетки, узлы которой совпадают с центрами положительных ионов, а вокруг ионов хаотически движутся свободные электроны.

Основные положения электронной теории проводимости металлов.

  1. Металл можно описать следующей моделью: кристаллическая решетка ионов погружена в идеальный электронный газ, состоящий из свободных электронов. У большинства металлов каждый атом ионизирован, поэтому концентрация свободных электронов приблизительно равна концентрации атомов 10 23 - 10 29 м -3 и почти не зависит от температуры.
  2. Свободные электроны в металлах находятся в непрерывном хаотическом движении.
  3. Электрический ток в металле образуется только за счет упорядоченного движения свободных электронов.
  4. Сталкиваясь с ионами, колеблющимися в узлах кристаллической решетки, электроны отдают им избыточную энергию. Вот почему при прохождении тока проводники нагреваются.

Электрический ток в металлах.

Сверхпроводимость

Явление уменьшения удельного сопротивления до нуля при температуре, отличной от абсолютного нуля, называется сверхпроводимостью. Материалы обнаруживающие способность переходить при некоторых температурах, отличных от абсолютного нуля, в сверхпроводящее состояние, называются сверхпроводниками.

Прохождение тока в сверхпроводнике происходит без потерь энергии, поэтому однажды возбужденный в сверхпроводящем кольце электрический ток может существовать неограниченно долго без изменения.

Сверхпроводящий материалы уже используются в электромагнитах. Ведутся исследования, направленные на создание сверхпроводящих линий электропередачи.

Применение явления сверхпроводимости в широкой практике может стать реальностью в ближайшие годы благодаря открытию в 1986 г. Сверхпроводимости керамик – соединений лантана, бария, меди и кислорода. Сверхпроводимость таких керамик сохраняется до температур около 100 К.

Молодцы, ребята! С работой справились отлично. Получилась хорошая презентация. Спасибо за урок!

Литература.

  1. Горбушин Ш.А. Опорные конспекты для изучения физики за курс средней общеобразовательной школы. – Ижевск “Удмуртия”, 1992.
  2. Ланина И.Я. Формирование познавательных интересов учащихся на уроках физики: Книга для учителя. – М.: Просвещение, 1985.
  3. Урок физики в современной школе. Творческий поиск учителей: Книга для учителя /Сост. Э.М.Браверман/ Под редакцией В.Г. Разумовского.- М.: Просвещение, 1993
  4. Дигелев Ф.М. Из истории физики и жизни ее творцов: Книга для учащихся.- М.: Просвещение, 1986.
  5. Карцев В.Л. Приключения великих уравнений.- 3-е издание – М.: Знание, 1986. (Жизнь замечательных идей).

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

ЭЛЕКТРИЧЕСКИЙ ТОК В МЕТАЛЛАХ Презентация разработана преподавателем КС и ПТ Каракашевой И.В. Санкт – Петербург 2016

2 слайд

Описание слайда:

Цели урока: Образовательные: познакомить учащихся с проводимостью металлов и ее техническим использованием; раскрыть понятие физической природы электрического тока в металлах; продолжить формирование естественно-научных представлений по изучаемой теме; создать условия для формирования познавательного интереса; расширить научно-технический кругозор учащихся Развивающие: создать условия для развития коммуникативных навыков; создать условия для развития аналитических способностей учащихся, умения анализировать, сопоставлять, сравнивать, обобщать, делать выводы; создать условия для развития памяти, внимания, воображения Воспитательные: способствовать развитию умения отстаивать свою точку зрения; способствовать развитию культуры взаимоотношений при работе в коллективе

3 слайд

Описание слайда:

Что называется металлом? Самое известное из ранних определений металла было дано в середине XVIII века М.В. Ломоносовым: “Металлом называется светлое тело, которое ковать можно. Таких тел только шесть: золото, серебро, медь, олово, железо и свинец”. Спустя два с половиной века многое стало известно о металлах. К числу металлов относится более 75% всех элементов таблицы Д. И. Менделеева, и подобрать абсолютно точное определение для металлов – почти безнадежная задача.

4 слайд

Описание слайда:

В1900 году немецкий ученый П. Друде на основании гипотезы о существовании свободных электронов в металлах создал электронную теорию проводимости металлов. Эта теория получила развитие в работах голландского физика Х. Лоренца (1904 г.) и носит название классической электронной теории. Она дала простое и наглядное объяснение большинства электрических и тепловых свойств металлов. Пауль Друде Карл Людвиг - немецкий физик Хендрик Антон Лоренц- голландский физик Классическая электронная теория

5 слайд

Описание слайда:

Движение электронов подчиняется законам классической механики. Электроны друг с другом не взаимодействуют. Электроны взаимодействуют только с ионами кристаллической решётки, взаимодействие это сводится к соударению. В промежутках между соударениями электроны движутся свободно. Электроны проводимости образуют «электронный газ», подобно идеальному газу. «Электронный газ» подчиняется законам идеального газа. При любом соударении электрон передаёт всю накопленную энергию. Основные положения теории

6 слайд

Описание слайда:

Металл обладает кристаллической решеткой, в узлах которой находятся положительные ионы, колеблющихся около положения равновесия, и свободных электронов, способных перемещаться по всему объему проводника (электронный газ, подчиняющийся законам идеального газа) Строение металла

7 слайд

Описание слайда:

Средняя скорость теплового движения электронов при комнатной температуре составляет примерно 105 м/с. Строение металла В металле в отсутствие электрического поля электроны хаотически движутся и сталкиваются, чаще всего с ионами кристаллической решетки.

8 слайд

Описание слайда:

Электрический ток в металлах Под действием электрического поля свободные электроны начинают упорядоченно перемещаться между ионами кристаллической решетки. Электрический ток протекает по проводнику благодаря наличию в нем свободных электронов, сорвавшихся с атомных орбит

9 слайд

Описание слайда:

Электрический ток в металлах Электрический ток в металлах – это упорядоченное движение электронов под действием электрического поля. При протекании тока по металлическому проводнику переноса вещества не происходит, следовательно, ионы металла не принимают участия в переносе электрического заряда. Это было подтверждено в опытах немецкого физика Э.Рикке в 1901 году.

10 слайд

Описание слайда:

Опыты Э.Рикке В этих опытах электрический ток 0,1 А пропускали в течении года через три прижатых друг к другу, хорошо отшлифованных цилиндра. Общий заряд, прошедший за это время через цилиндры, превысил 3,5 МК. После окончания было установлено, что имеются лишь незначительные следы взаимного проникновения металлов, не превышающие результатов обычной диффузии атомов в твёрдых телах. Измерения показали, что масса каждого из цилиндров осталась неизменной. Поскольку массы атомов меди и алюминия существенно отличаются друг от друга, то масса цилиндров должна была бы заметно измениться, если бы носителями заряда были ионы. Следовательно, свободными носителями заряда в металлах являются не ионы. Огромный заряд, который прошёл через цилиндры, был перенесён, очевидно, такими частицами, которые одинаковы и в меди, и в алюминии.

11 слайд

Описание слайда:

Экспериментальное доказательство существования свободных электронов в металлах Экспериментальное доказательство того, что ток в металлах создается свободными электронами, было дано в опытах Л.И. Мандельштама и Н. Д. Папалекси (1913 г., результаты не были опубликованы), а также опытах Т. Стюарта и Р. Толмена (1916 г.). Л.И. Мандельштам 1879-1949 Н. Д. Папалекси 1880-1947 Т. Стюарт

12 слайд

Описание слайда:

Катушка, соединенная с телефоном, раскручивалась вокруг своей оси в разные стороны и резко тормозилась. Если электроны и вправду обладают массой, то, когда катушка внезапно останавливается, электроны еще некоторое время должны двигаться по инерции. Движение электронов по проводу - электрический ток, и телефон должен издавать звук. Раз в телефоне слышен звук, следовательно, через него ток протекает. Но никакие измерения и количественные расчеты в этих опытах не были произведены. Опыт Л.И.Мандельштама и Н.Д.Папалекси (1912 г.)

13 слайд

Описание слайда:

Опыт Т.Стюарта и Р.Толмена Катушка с большим числом витков тонкой проволоки приводилась в быстрое вращение вокруг своей оси. Концы катушки с помощью гибких проводов были присоединены к чувствительному баллистическому гальванометру. Раскрученная катушка резко тормозилась, и в цепи возникал кратковременных ток, обусловленный инерцией носителей заряда. Полный заряд, протекающий по цепи, измерялся по отбросу стрелки гальванометра.

14 слайд

Описание слайда:

Опыт Т.Стюарта и Р.Толмена Направление тока свидетельствовало о том, что он обусловлен движением отрицательно заряженных частиц. Измеряя заряд, проходящий через гальванометр за все время существования тока в цепи, Т.Стюарт и Р.Толмен определили экспериментально удельный заряд частиц. Он оказался равным

15 слайд

Описание слайда:

Вольт – амперная характеристика металлов Электрический ток в металлах Носители заряда – электроны Проводимость – электронная Проводник, по которому течет ток, нагревается. Проводник, по которому течет ток, оказывает магнитное действие на окружающие тела.

16 слайд

Описание слайда:

Зависимость сопротивления проводника от температуры Сопротивление - это физическая величина, характеризующая способность проводника противодействовать установлению электрического тока в нем. Удельное сопротивление – это сопротивление цилиндрического проводника единичной длины и единичной площадью поперечного сечения. При нагревании размеры проводника меняются мало, а в основном меняется удельное сопротивление.

17 слайд

Описание слайда:

Зависимость сопротивления проводника от температуры Удельное сопротивление проводника зависит от температуры: где ро - удельное сопротивление при 0 градусов, t - температура, α - температурный коэффициент сопротивления

18 слайд

Описание слайда:

Зависимость сопротивления проводника от температуры Для металлических проводников с ростом температуры увеличивается удельное сопротивление, увеличивается сопротивление проводника и уменьшается электрический ток в цепи. Сопротивление проводника при изменении температуры можно рассчитать по формуле: R = Ro (1 + α t), где Ro - сопротивление проводника при 0 градусов Цельсия t - температура проводника α - температурный коэффициент сопротивления

19 слайд

Описание слайда:

Применение тока в металлах Передача электроэнергии от источника к потребителям В электродвигателях и генераторах В нагревательных приборах

20 слайд

Описание слайда:

Противоречия классической электронной теории Классическая электронная теория объясняет существование электрического сопротивления металлов, законы Ома и Джоуля–Ленца. Однако в ряде вопросов классическая электронная теория приводит к выводам, находящимся в противоречии с опытом. Эта теория не может объяснить, почему молярная теплоемкость металлов, также как и молярная теплоемкость диэлектрических кристаллов, равна 3R, где R – универсальная газовая постоянная (закон Дюлонга и Пти). Наличие свободных электронов не сказывается на величине теплоемкости металлов. Классическая электронная теория не может также объяснить температурную зависимость удельного сопротивления металлов. Теория дает соотношение в то время как из эксперимента получается зависимость ρ ~ T. Однако наиболее ярким примером расхождения теории и опытов является сверхпроводимость.

21 слайд

Описание слайда:

Сверхпроводимость Согласно классической электронной теории, удельное сопротивление металлов должно монотонно уменьшаться при охлаждении, оставаясь конечным при всех температурах. Такая зависимость действительно наблюдается на опыте при сравнительно высоких температурах. При температурах порядка нескольких кельвинов удельное сопротивление многих металлов перестает зависеть от температуры и достигает некоторого предельного значения. В 1911 г. нидерландский ученый Гейке Камерлинг-0ннес обнаружил, что при понижении температуры ртути до 4,1 К ее удельное сопротивление скачком уменьшается до нуля. (1853- 1926) Гейке Камерлинг -0ннес, нидерландский ученый

22 слайд

Описание слайда:

Сверхпроводимость При некоторой определенной температуре Tкр, различной для разных веществ, удельное сопротивление скачком уменьшается до нуля. Это явление называется сверхпроводимостью. Материалы, обнаруживающие способность переходить при некоторых температурах, отличных от абсолютного нуля, в сверхпроводящее состояние, называются сверхпроводниками. Зависимость удельного сопротивления ρ от абсолютной температуры T при низких температурах: a – нормальный металл; b – сверхпроводник

23 слайд

Описание слайда:

Сверхпроводимость Г. Камерлинг-Оннес был удостоен Нобелевской премии по физике 1913 г. «за исследования свойств вещества при низких температурах». В дальнейшем было выяснено, что более 25 химических элементов - металлов при очень низких температурах становятся сверхпроводниками. Самая низкая температура у вольфрама - 0,012 К, самая высокая у ниобия - 9 К. Сверхпроводимость наблюдается не только у чистых металлов, но и у многих химических соединений и сплавов и некоторых полупроводников. При этом сами элементы, входящие в состав сверхпроводящего соединения, могут и не являться сверхпроводниками. Например, NiBi, Au2Bi, PdTe, PtS и другие. В то же время такие «хорошие» проводники, как медь и серебро, не становятся сверхпроводниками при низких температурах.

24 слайд

Описание слайда:

Сверхпроводимость Первое теоретическое объяснение сверхпроводимости было дано в 1935 году братьями Фрицем и Хайнцем Лондоном. Более общая теория была построена в 1950 году Л. Д. Ландау и В. Л. Гинзбургом. Однако эти теории не раскрывали детальные механизмы сверхпроводимости. Впервые сверхпроводимость получила объяснение на микроскопическом уровне в 1957 году в работе американских физиков Джона Бардина, Леона Купера и Джона Шриффера. Центральным элементом их теории, получившей название теории БКШ, являются так называемые куперовские пары электронов. Позднее было установлено, что сверхпроводники делятся на два больших семейства: сверхпроводников I типа (к ним, в частности, относится ртуть) и II типа(которыми обычно являются сплавы разных металлов). В открытии сверхпроводимости II типа значительную роль сыграли работы А. А. Абрикосова в 1950-е.

25 слайд

Описание слайда:

Сверхпроводимость В 1962 году английским физиком Брайаном Джозефсоном был открыт эффект, получивший его имя. В 1986 году Карл Мюллер и Георг Беднорц открыли новый тип сверхпроводников, получивших название высокотемпературных. В начале 1987 года было показано, что соединения лантана, стронция, меди и кислорода (La-Sr-Cu-O) испытывают скачок сопротивления практически до нуля при температуре 36 К. В начале марта 1987 года был впервые получен сверхпроводник при температуре, превышающей температуру кипения жидкого азота (77,4 К): было обнаружено, что таким свойством обладает соединение иттрия, бария, меди и кислорода (Y-Ba-Cu-O).

26 слайд

Описание слайда:

Сверхпроводимость В 1988 году было создано керамическое соединение (смесь оксидов таллия, кальция, бария и меди) с критической температурой 125 К. В 2003 году было открыто керамическое соединениюеHg-Ba-Ca-Cu-O(F), критическая температура для которого равна 138 К. Более того, при давлении 400 кбар то же соединение является сверхпроводником при температурах до 166 К. В 2015 году был установлен новый рекорд температуры, при которой достигается сверхпроводимость. Для H2S (сероводород) при давлении 100 ГПа был зафиксирован сверхпроводящий переход при температуре 203 К (-70°C).

27 слайд

Описание слайда:

Свойства сверхпроводников Так как сопротивление в сверхпроводимости отсутствует, то не происходит выделения тепла при прохождении через проводник электрического тока. Это свойство сверхпроводников широко используется. Для каждого сверхпроводника существует критическое значение силы тока, которое можно достигнуть в проводнике, не нарушая его сверхпроводимости. Это происходит потому, что при прохождении силы тока, вокруг проводника создается магнитное поле. А магнитное поле разрушает сверхпроводящее состояние. Поэтому сверхпроводники невозможно использовать для получения сколь угодно сильного магнитного поля. При прохождении энергии через сверхпроводник не происходит её потерь. Одним из направлений исследований современных физиков, является создание сверхпроводящих материалов при комнатных температурах.

28 слайд

Описание слайда:

Сверхпроводимость В настоящее время известно свыше 500 чистых элементов и сплавов, обнаруживающих свойство сверхпроводимости. По своему поведению в достаточно сильных магнитных полях они подразделяются на сверхпроводники 1-го и 2-го рода. Сверхпроводники I рода полностью вытесняют магнитное поле. К сверхпроводникам 1 рода относятся все элементы-сверхпроводники, кроме Nb и V, и некоторые сплавы.

29 слайд

Оглавление Что такое электрический ток? Что такое электрический ток? Явлениям, которые сопровождают электрический ток Явлениям, которые сопровождают электрический ток Опыт Толмена и Стюарта Опыт Толмена и Стюарта Классическая электронная теория Классическая электронная теория Потенциальный барьер Потенциальный барьер Сверхпроводимость Сверхпроводимость Высокотемпературная сверхпроводимость Высокотемпературная сверхпроводимость


Что такое электрический ток? Электрический ток в металлах – это упорядоченное движение электронов под действием электрического поля. Опыты показывают, что при протекании тока по металлическому проводнику не происходит переноса вещества, следовательно, ионы металла не принимают участия в переносе электрического заряда.


Явления, которые сопровождают электрический ток 1. проводник, по которому течет ток, нагревается, 2. электрический ток может изменять химический состав проводника, 3. ток оказывает силовое воздействие на соседние токи и намагниченные тела 1. проводник, по которому течет ток, нагревается, 2. электрический ток может изменять химический состав проводника, 3. ток оказывает силовое воздействие на соседние токи и намагниченные тела


Опыт Толмена и Стюарта (ч1) Схема опыта Толмена и Стюарта показана на рисунке. Катушка с большим числом витков тонкой проволоки приводилась в быстрое вращение вокруг своей оси. Концы катушки с помощью гибких проводов были присоединены к чувствительному баллистическому гальванометру Г. Раскрученная катушка резко тормозилась, и в цепи возникал кратковременных ток, обусловленный инерцией носителей заряда. Полный заряд, протекающий по цепи, измерялся по отбросу стрелки гальванометра. Схема опыта Толмена и Стюарта показана на рисунке. Катушка с большим числом витков тонкой проволоки приводилась в быстрое вращение вокруг своей оси. Концы катушки с помощью гибких проводов были присоединены к чувствительному баллистическому гальванометру Г. Раскрученная катушка резко тормозилась, и в цепи возникал кратковременных ток, обусловленный инерцией носителей заряда. Полный заряд, протекающий по цепи, измерялся по отбросу стрелки гальванометра.


(ч2) При торможении вращающейся катушки на каждый носитель заряда e действует тормозящая сила которая играет роль сторонней силы, то есть силы неэлектрического происхождения. Сторонняя сила, отнесенная к единице заряда, по определению является напряженностью Eст поля сторонних сил: При торможении вращающейся катушки на каждый носитель заряда e действует тормозящая сила которая играет роль сторонней силы, то есть силы неэлектрического происхождения. Сторонняя сила, отнесенная к единице заряда, по определению является напряженностью Eст поля сторонних сил:сторонней силысторонней силы


(ч3) Следовательно, в цепи при торможении катушки возникает электродвижущая сила, равная: Следовательно, в цепи при торможении катушки возникает электродвижущая сила, равная: где l – длина проволоки катушки. За время торможения катушки по цепи протечет заряд q, равный: где l – длина проволоки катушки. За время торможения катушки по цепи протечет заряд q, равный:


(ч4) Здесь I – мгновенное значение силы тока в катушке, R – полное сопротивление цепи, υ0 – начальная линейная скорость проволоки. Здесь I – мгновенное значение силы тока в катушке, R – полное сопротивление цепи, υ0 – начальная линейная скорость проволоки. Отсюда удельный заряд e / m свободных носителей тока в металлах равен: Отсюда удельный заряд e / m свободных носителей тока в металлах равен:


(ч5) Все величины, входящие в правую часть этого соотношения, можно измерить. На основании результатов опытов Толмена и Стюарта было установлено, что носители свободного заряда в металлах имеют отрицательный знак, а отношение заряда носителя к его массе близко к удельному заряду электрона, полученному из других опытов. Так было установлено, что носителями свободных зарядов в металлах являются электроны. Все величины, входящие в правую часть этого соотношения, можно измерить. На основании результатов опытов Толмена и Стюарта было установлено, что носители свободного заряда в металлах имеют отрицательный знак, а отношение заряда носителя к его массе близко к удельному заряду электрона, полученному из других опытов. Так было установлено, что носителями свободных зарядов в металлах являются электроны. По современным данным модуль заряда электрона (элементарный заряд) равен: По современным данным модуль заряда электрона (элементарный заряд) равен: а его удельный заряд есть: а его удельный заряд есть:


(ч6) Хорошая электропроводность металлов объясняется высокой концентрацией свободных электронов, равной по порядку величины числу атомов в единице объема. Хорошая электропроводность металлов объясняется высокой концентрацией свободных электронов, равной по порядку величины числу атомов в единице объема.


Классическая электронная теория Предположение о том, что за электрический ток в металлах ответственны электроны, возникло значительно раньше опытов Толмена и Стюарта. Еще в 1900 году немецкий ученый П. Друде на основе гипотезы о существовании свободных электронов в металлах создал электронную теорию проводимости металлов. Эта теория получила развитие в работах голландского физика Х. Лоренца и носит название классической электронной теории. Согласно этой теории, электроны в металлах ведут себя как электронный газ, во многом похожий на идеальный газ. Электронный газ заполняет пространство между ионами, образующими кристаллическую решетку металла Предположение о том, что за электрический ток в металлах ответственны электроны, возникло значительно раньше опытов Толмена и Стюарта. Еще в 1900 году немецкий ученый П. Друде на основе гипотезы о существовании свободных электронов в металлах создал электронную теорию проводимости металлов. Эта теория получила развитие в работах голландского физика Х. Лоренца и носит название классической электронной теории. Согласно этой теории, электроны в металлах ведут себя как электронный газ, во многом похожий на идеальный газ. Электронный газ заполняет пространство между ионами, образующими кристаллическую решетку металла


Потенциальный барьер Из-за взаимодействия с ионами электроны могут покинуть металл, лишь преодолев так называемый потенциальный барьер. Высота этого барьера называется работой выхода. При обычных (комнатных) температурах у электронов не хватает энергии для преодоления потенциального барьера. Из-за взаимодействия с ионами электроны могут покинуть металл, лишь преодолев так называемый потенциальный барьер. Высота этого барьера называется работой выхода. При обычных (комнатных) температурах у электронов не хватает энергии для преодоления потенциального барьера.


Сверхпроводимость Согласно классической электронной теории, удельное сопротивление металлов должно монотонно уменьшаться при охлаждении, оставаясь конечным при всех температурах. Такая зависимость действительно наблюдается на опыте при сравнительно высоких температурах. При более низких температурах порядка нескольких кельвинов удельное сопротивление многих металлов перестает зависеть от температуры и достигает некоторого предельного значения. Однако наибольший интерес представляет удивительное явление сверхпроводимости, открытое датским физиком Х. Каммерлинг-Оннесом в 1911 году. При некоторой определенной температуре Tкр, различной для разных веществ, удельное сопротивление скачком уменьшается до нуля (рис). Критическая температура у ртути равна 4,1 К, у аллюминия 1,2 К, у олова 3,7 К. Сверхпроводимость наблюдается не только у элементов, но и у многих химических соединений и сплавов. Например, соединение ниобия с оловом (Ni3Sn) имеет критическую температуру 18 К. Некоторые вещества, переходящие при низких температурах в сверхпроводящее состояние, не являются проводниками при обычных температурах. В то же время такие «хорошие» проводники, как медь и серебро, не становятся сверхпроводниками при низких температурах. Согласно классической электронной теории, удельное сопротивление металлов должно монотонно уменьшаться при охлаждении, оставаясь конечным при всех температурах. Такая зависимость действительно наблюдается на опыте при сравнительно высоких температурах. При более низких температурах порядка нескольких кельвинов удельное сопротивление многих металлов перестает зависеть от температуры и достигает некоторого предельного значения. Однако наибольший интерес представляет удивительное явление сверхпроводимости, открытое датским физиком Х. Каммерлинг-Оннесом в 1911 году. При некоторой определенной температуре Tкр, различной для разных веществ, удельное сопротивление скачком уменьшается до нуля (рис). Критическая температура у ртути равна 4,1 К, у аллюминия 1,2 К, у олова 3,7 К. Сверхпроводимость наблюдается не только у элементов, но и у многих химических соединений и сплавов. Например, соединение ниобия с оловом (Ni3Sn) имеет критическую температуру 18 К. Некоторые вещества, переходящие при низких температурах в сверхпроводящее состояние, не являются проводниками при обычных температурах. В то же время такие «хорошие» проводники, как медь и серебро, не становятся сверхпроводниками при низких температурах.


Вещества в сверхпроводящем состоянии обладают исключительными свойствами. Практически наиболее важным их них является способность длительное время (многие годы) поддерживать без затухания электрический ток, возбужденный в сверхпроводящей цепи. Вещества в сверхпроводящем состоянии обладают исключительными свойствами. Практически наиболее важным их них является способность длительное время (многие годы) поддерживать без затухания электрический ток, возбужденный в сверхпроводящей цепи. Классическая электронная теория не способна объяснить явление сверхпроводимости. Объяснение механизма этого явления было дано только через 60 лет после его открытия на основе квантово-механических представлений. Классическая электронная теория не способна объяснить явление сверхпроводимости. Объяснение механизма этого явления было дано только через 60 лет после его открытия на основе квантово-механических представлений. Научный интерес к сверхпроводимости возрастал по мере открытия новых материалов с более высокими критическими температурами. Значительный шаг в этом направлении произошел в 1986 году, когда было обнаружено, что у одного сложного керамического соединения Tкр = 35 K. Уже в следующем 1987 году физики сумели создать новую керамику с критической температурой 98 К, превышающей температуру жидкого азота (77 К). Научный интерес к сверхпроводимости возрастал по мере открытия новых материалов с более высокими критическими температурами. Значительный шаг в этом направлении произошел в 1986 году, когда было обнаружено, что у одного сложного керамического соединения Tкр = 35 K. Уже в следующем 1987 году физики сумели создать новую керамику с критической температурой 98 К, превышающей температуру жидкого азота (77 К).




Высокотемпературная сверхпроводимость Явление перехода веществ в сверхпроводящее состояние при температурах, превышающих температуру кипения жидкого азота, было названо высокотемпературной сверхпроводимостью. В 1988 году было создано керамическое соединение на основе элементов Tl–Ca–Ba–Cu– O с критической температурой 125 К. Явление перехода веществ в сверхпроводящее состояние при температурах, превышающих температуру кипения жидкого азота, было названо высокотемпературной сверхпроводимостью. В 1988 году было создано керамическое соединение на основе элементов Tl–Ca–Ba–Cu– O с критической температурой 125 К. В настоящее время ведутся интенсивные работы по поиску новых веществ с еще более высокими значениями Tкр. Ученые надеются получить вещество в сверхпроводящем состоянии при комнатной температуре. Если это произойдет, это будет настоящей революцией в науке, технике и вообще в жизни людей. В настоящее время ведутся интенсивные работы по поиску новых веществ с еще более высокими значениями Tкр. Ученые надеются получить вещество в сверхпроводящем состоянии при комнатной температуре. Если это произойдет, это будет настоящей революцией в науке, технике и вообще в жизни людей. Следует отметить, что до настоящего времени механизм высокотемпературной сверхпроводимости керамических материалов до конца не выяснен. Следует отметить, что до настоящего времени механизм высокотемпературной сверхпроводимости керамических материалов до конца не выяснен.