Максимальная сила тока в катушке колебательного контура. Уравнение, описывающее процессы в колебательном контуре. Период свободных электрических колебаний

«Гармонические колебания» - Называются. 1. Разность фаз равна нулю или четному числу?, то есть. Рисунок 4. Тема 2 СЛОЖЕНИЕ ГАРМОНИЧЕСКИХ КОЛЕБАНИЙ. 2.3 Сложение взаимно перпендикулярных колебаний. Метод биений используется для настройки музыкальных инструментов, анализа слуха и т.д. Рисунок 5. Тогда. ?1 – фаза 1-го колебания. - Результирующее колебание, тоже гармоническое, с частотой?:

«Частота колебаний» - Инфразвук. Какими общими свойствами обладают все источники звука? От чего зависит высота звука? Вспомнить все, что знаем о звуке. Каждый из нас знаком с таким звуковым явлением, как эхо. Что называется чистым тоном? Содержание проекта: Звук камертона является чистым тоном. Подготовила ученица 9 класса: Смольянинова Екатерина.

«Физика Колебания и волны» - Уметь: Рассчитывать период и частоту колебаний маятника, ускорение свободного падения с помощью математического маятника, длину волны. Обобщение темы Литература для работы: 1.Физика-9 – учебник 2.Физика -8 .автор Громов 3. Физика, человек, окружающая среда. (приложение к учебнику). Изучив тему.Колевания и волны, ты должен...

«Свободные колебания» - Формула Томпсона. Если Um = const , то амплитуда вынужденных колебаний силы тока зависит от? : Магнитный поток Ф сквозь плоскость рамки: Где i и q – сила тока и электрический заряд в любой момент времени. Рис.1. Циклическая частота свободных электромагнитных колебаний в контуре: Из закона Ома для участка цепи переменного тока:

«Механические колебания» - Вынужденные. Вынужденные колебания. Волны. Выполнила: ученица 11 класса «А» Олейникова Юлия. Поперечные. Гармонические колебания. Свободные. Упругие волны – механические возмущения, распространяющиеся в упругой среде. Механические колебания и волны. Колебания - движения или процессы, которые характеризуются определенной повторяемостью во времени.

«Резонанс» - Из-за огромной массы и инерционности жидкость реагирует на сотрясения с запозданием. Акустический резонанс - трубка с водой и камертон без резонатора. Очень важно грамотно установить и настроить все компоненты системы. Биение сердца, сокращение желудка, деятельность кишечника имеют колебательный характер.

Всего в теме 10 презентаций

1.Колебательный контур.

2 Уравнение колебательного контура

3. Свободные колебания в контуре

4.Свободные затухающие колебания в контуре

5. Вынужденные электрические колебания.

6. Резонанс в последовательном контуре

7. Резонанс в параллельном контуре

8. Переменный ток

1. 5.1. Колебательный контур.

Выясним, каким образом в колебательном контуре возникают и поддерживаются электрические колебания.

    Пусть вначале верхняя обкладка конденсатора заряжена положительно ,а нижняя отрицательно (рис. 11.1,а).

При этом вся энергия колебательного контура сосредоточена в конденсаторе.

    Замкнем ключ К.. Конденсатор начнет разряжаться, и через катушкуL потечет ток. Электрическая энергия конденсатора начнет превращаться в магнитную энергию катушки. Этот процесс закончится, когда конденсатор полностью разрядится, а ток в цепи достигнет максимума (рис. 11.1,б).

    С этого момента ток, не меняя направления, начнет убывать. Однако он прекратится не сразу - его будет поддерживать э. д. с. самоиндукции. Ток будет перезаряжать конденсатор, возникнет электрическое поле, стремящееся ослабить ток. Наконец, ток прекратится, а заряд на конденсаторе достигнет максимума.

    С этого момента конденсатор начнет разряжаться опять ток потечет в обратном направлении и т. д. - процесс будет повторяться

В контуре при отсутствии сопротивления проводников будут совершатьсястрого периодические колебания . В ходе процесса периодически изменяются: заряд на обкладках конденсатора, напряжение на нем и ток через катушку.

Колебания сопровождаются взаимными превращениями энергии электрического и магнитного полей.

Если же сопротивление проводников

, то помимо описанного процесса будет происходить преобразование электромагнитной энергии в джоулеву теплоту.

Сопротивление проводников цепи R принято называть активным сопротивлением.

1.5.2. Уравнение колебательного контура

Найдем уравнение колебаний в контуре, содержащем последовательно соединенные конденсатор С, катушку индуктивностиL , активное сопротивлениеR и внешнюю переменную э. д. с.(рис. 1.5.1).

Выберем положительное направление обхода контура, например по часовой стрелке.

Обозначим черезq заряд той обкладки конденсатора, направление от которой к другой обкладке совпадает с выбранным положительным на­правлением обхода контура.

Тогда ток в контуре определяется как

(1)

Следовательно, если I > О, то иdq > 0, и наоборот (знак I совпадает со знакомdq ).

Согласно закону Ома для участка цепи 1 RL 2


. (2),

где - э. д. с. самоиндукции.

В нашем случае



(знак q должен совпадать со знаком разности

, ибоС > 0).

Поэтому уравнение (2) можно переписать в виде

или с учетом (1) как

Это и есть уравнение колебательного контура - линейное дифференциальное неоднородное уравнение второго порядка с постоянными коэффициентами. Найдя с помощью этого уравненияq (t ), мы можем легко вычислить- напряжение на конденсаторе

и силу токаI- по формуле (1).

Уравнению колебательного контура можно придать иной вид:


(5)

где введены обозначения



. (6)

Величину - называютсобственной частотой контура,

β - коэффициентом затухания.

    Если ξ = 0, то колебания принято называть свободными.

- При R = О они будут незатухающими,

- при R ≠0 - затухающими.

Колебательный контур называется идеальным, если он состоит из катушки и емкости и в нем нет сопротивления потерь.

Рассмотрим физические процессы в следующей цепи:

1 Ключ стоит в положении 1. Конденсатор начинает заряжаться, от источника напряжения и в нем накапливается энергия электрического поля,

т.е.конденсатор становится источником электрической энергии.

2. Ключ в положении 2. Конденсатор начнет разряжаться. Электрическая энергия, запасенная в конденсаторе переходит в энергию магнитного поля катушки.

Ток в цепи достигает максимального значения(точка 1). Напряжение на обкладках конденсатора уменьшается до нуля.

В период от точки 1 до точки 2 ток в контуре уменьшается до нуля, но как только он начинает уменьшатся, то уменьшается магнитное поле катушки и в катушке индуцируется ЭДС самоиндукции, который противодействует уменьшению тока, поэтому он уменьшается до нуля не скачкообразно, а плавно. Так как возникает ЭДС самоиндукции, то катушка становится источником энергии. От этой ЭДС конденсатор начинает заряжаться, но с обратной полярностью (напряжение конденсатора отрицательное) (в точке 2 конденсатор вновь заряжается).

Вывод: в цепи LC происходит непрерывное колебание энергии между электрическим и магнитным полями, поэтому такая цепь называется колебательным контуром.

Получившиеся колебания называются свободными илисобственными , поскольку они происходят без помощи постороннего источника электрической энергии, внесенной ранее в контур (в электрическое поле конденсатора). Так как емкость и индуктивность идеальны (нет сопротивления потерь) и энергия из цепи не уходит, амплитуда колебаний с течением времени не меняется и колебания будут незатухающими .

Определим угловую частоту свободных колебаний:

Используем равенство энергий электрического и магнитного полей

Где ώ угловая частота свободных колебаний.

[ ώ ]=1/с

f 0= ώ /2π [Гц].

Период свободных колебаний Т0=1/f .

Частоту свободных колебаний называют частотой собственных колебаний контура.

Из выражения: ώ²LC=1 получимώL=1/Cώ , следовательно, при токе в контуре с частотой свободных колебаний индуктивное сопротивление равно емкостному сопротивлению.

Характеристические сопротивления.

Индуктивное или емкостное сопротивление в колебательном контуре при частоте свободных колебаний называется характеристическим сопротивлением.

Характеристическое сопротивление вычисляется по формулам:

5.2 Реальный колебательный контур

Реальный колебательный контур обладает активным сопротивлением, поэтому при воздействии в контуре свободных колебаний энергия предварительно заряженного конденсатора постепенно тратится, преобразуясь в тепловую.

Свободные колебания в контуре являются затухающими, так как в каждый период энергия уменьшается и амплитуда колебаний в каждый период будет уменьшаться.

Рисунок - реальный колебательный контур.

Угловая частота свободных колебаний в реальном колебательном контуре:

Если R=2… , то угловая частота равна нулю, следовательно свободные колебания в контуре не возникнут.

Таким образом колебательным контуром называется электрическая цепь состоящая из индуктивности и емкости и обладающая малым активным сопротивлением, меньшим удвоенного характеристического сопротивления, что обеспечивает обмен энергией между индуктивностью и емкостью.

В реальном колебательном контуре свободные колебания затухают тем быстрее, чем больше активное сопротивление.

Для характеристики интенсивности затухания свободных колебаний используется понятие «затухание контура» - отношение активного сопротивления к характеристическому.

На практике используют величину, обратную затуханию – добротность контура.

Для получения незатухающих колебаний в реальном колебательном контуре необходимо в течение каждого периода колебаний пополнять электрическую энергию на активном сопротивлении контура в такт с частотой собственных колебаний. Это осуществляется с помощью генератора.

Если подключить колебательный контур к генератору переменного тока, частота которого отличается от частоты свободных колебаний контура, то в цепи протекает ток с частотой равной частоте напряжения генератора. Эти колебания называют вынужденным.

Если частота генератора отличается от собственной частоты контура, то такой колебательный контур является ненастроенным относительно частоты внешнего воздействия, если же частоты совпадают, то настроенным.

Задача: Определить индуктивность, угловую частоту контура, характеристическое сопротивление, если емкость колебательного контура 100 пФ, частота свободных колебаний 1,59 МГц.

Решение:

Тестовые задания:

Тема занятия 8: РЕЗОНАНС НАПРЯЖЕНИЙ

Резонанс напряжений – явление возрастания напряжений на реактивных элементах, превышающих напряжение на зажимах цепи при максимальном токе в цепи, которое совпадает по фазе с входным напряжением.

Условия возникновения резонанса:

    Последовательное соединение LиCс генератором переменного тока;

    Частота генератора должна быть равна частоте собственных колебаний контура, при этом характеристические сопротивления равны;

    Сопротивление должно быть меньше, чем 2ρ, так как только в этом случае в цепи возникнут свободные колебания, поддерживаемые внешним источником.

Полное сопротивление цепи:

так как равны характеристические сопротивления. Следовательно, при резонансе цепь носит чисто активный характер, значит, входное напряжение, и ток в момент резонанса совпадают по фазе. Ток принимает максимальное значение.

При максимальном значении тока напряжение на участках L и C будут большими и равными между собой.

Напряжение на зажимах цепи:

Рассмотрим следующие соотношения:

, следовательно

Q добротность контура –при резонансе напряжения показывает, во сколько раз напряжение на реактивных элементах больше входного напряжения генератора, питающего цепь. При резонансе коэффициент передачи последовательного колебательного контура

резонанса.

Пример:

Uc=Ul=QU =100В,

то есть напряжение на зажимах меньше напряжений на емкости и индуктивности. Это явление называется резонансом напряжений

При резонансе, коэффициент передачи равен добротности.

Построим векторную диаграмму напряжения

Напряжение на емкости равно напряжению на индуктивности, следовательно напряжение на сопротивлении равно напряжению на зажимах и совпадает по фазе с током.

Рассмотрим энергетический процесс в колебательном контуре:

В цепи имеется обмен энергии между электрическим полем конденсатора и магнитным полем катушки. К генератору энергия катушки не возвращается. От генератора в цепь поступает такое количество энергии, которое тратится на резисторе. Это необходимо для того, чтобы в контуре наблюдались незатухающие колебания. Мощность в цепи только активная.

Докажем это математически:

, полная мощность цепи, которая равна активной мощности.

Реактивная мощность.

8.1 Резонансная частота. Расстройка.

Lώ=l/ώC , следовательно

, угловая резонансная частота.

Из формулы видно, что резонанс наступает, если частота питающего генератора равна собственным колебаниям контура.

При работе с колебательным контуром необходимо знать, совпадает ли частота генератора и частота собственных колебаний контура. Если частоты совпадают, то контур остается настроенным в резонанс, если не совпадает – то в контуреприсутствует расстройка.

Настроить колебательный контур в резонанс можно тремя способами:

1 Изменять частоту генератора, при значениях емкости и индуктивности const, то есть изменяя частоту генератора мы подстраиваем эту частоту под частоту колебательного контура

2 Изменять индуктивность катушки, при частоте питания и емкости const;

3 Изменять емкость конденсатора, при частоте питания и индуктивности const.

Во втором и третьем способе изменяя частоту собственных колебаний контура, подстраиваем ее под частоту генератора.

При ненастроенном контуре частота генератора и контура не равны, то есть присутствует расстройка.

Расстройка – отклонение частоты от резонансной частоты.

Существует три вида расстройки :

    Абсолютная – разность между данной частотой и резонансной

    Обобщенная – отношение реактивного сопротивления к активному:

    Относительная – отношение абсолютной расстройки к резонансной частоте:

При резонансе все расстройки равны нулю , если частота генератора меньше частоты контура, то расстройка считается отрицательной,

Если больше – положительной.

Таким образом добротность характеризует качество контура, а обобщенная расстройка- удаленность от резонансной частоты.

8.2 Построение зависимостейX , X L , X C отf .

Задачи:

    Сопротивление контура 15 Ом, индуктивность 636 мкГн, Емкость 600 пФ, напряжение питающей сети 1,8 В. Найти собственную частоту контура, затухание контура, характеристическое сопротивление, ток, активную мощность, добротность, напряжение на зажимах контура.

Решение:

    Напряжение на зажимах генератора 1 В, частота питающей сети 1 МГц, добротность 100, емкость 100 пФ. Найти: затухание, характеристическое сопротивление, активное сопротивление, индуктивность, частоту контура, ток, мощность, напряжения на емкости и индуктивности.

Решение:

Тестовые задания:

Тема занятия 9 : Входные и передаточные АЧХ и ФЧХ последовательного колебательного контура.

9.1 Входные АЧХ и ФЧХ.

В последовательном колебательном контуре:

R – активное сопротивление;

X – реактивное сопротивление.

Электрическим колебательным контуром называют замкнутую цепь, состоящую из конденсатора С и катушки индуктивности L (рис. 9.8). Периодически повторяющиеся изменения силы тока в катушке и напряжения на конденсаторе при отсутствии внешних воздействий называются свободными колебаниями.

При подключении к обкладкам заряженного конденсатора (рис. 9.8а ) катушки индуктивности в ней возникает ток. Если электрическое сопротивление катушки пренебрежимо мало, то энергия электрического поля W е заряженного конденсатора начинает превращаеться в энергию магнитного поля W м . Мгновенной раз-рядке конденсатора препятствует ЭДС самоиндукции, сдер-живающая процесс возрастания силы тока в катушке.

В тот мо-мент, когда конденсатор полностью разрядится, сила тока в катушке и энергия магнитного поля достигнут максимальных (амплитудных) значений (рис. 9.8б ). После разрядки конденсатора ток в катушке убывает, но это приводит к уменьшению магнитного потока, что вызывает появ-ление в катушке ЭДС самоиндукции и индукционного тока. Сейчас на-правление индукционного тока таково, что он препятствует умень-шению магнитного потока.

Конденсатор заряжается индукционным током катушки. Когда ток исчезнет, конденсатор окажется заряженным до первоначального значения заряда, но противоположного знака (рис. 9.8в ). После этого происходит следующий процесс перезарядки конденсатора током, протекающим в противоположном направлении (рис. 9.8г ), и возврат в исходное состояние после совершения одного полного колебания (рис. 9.8д ). В верхней части рисунка показаны значения времени соответ-ству-ющих состояний, выраженные в долях периода

Где w 0 - круговая (циклическая) частота колебаний в контуре.

Из закона сохранения энергии следует, что при отсутствии в контуре сопротивления максимальное значение энергии W e электрического поля заряжен-ного конденсатора равно максимальному значению энергии магнитного поля W м катушки: , откуда можно получить связь амплитудных значений тока в катушке и напряжения на конденсаторе: . Это отношение имеет размерность сопротивления, поэтому величину называют волновым, или характеристическим сопротивлением контура.

В реальном электрическом контуре из-за потерь энергии на нагревание проводников и диэлектриков энергия магнитного и электрического полей по-степенно превращается во внутреннюю энергию. Свободные электромагнитные колебания в контуре оказываются затухающими .

Потери энергии в контуре можно учесть путем введения активного сопротивления (рис. 9.9). Поскольку потери в диэлектрике конденсатора малы, это сопротивление практически равно активному сопротивлению катушки индуктивности. Считая направление тока, заряжающего конденсатор, положительным, запишем закон Ома для участка цепи от отрицательно заряженной обкладки конденсатора 1 до положительно заряженной 2 . В соответствии с (2.13) получаем: .

Направление обхода контура от точки 1 к точке 2 совпадает с направлением тока, поэтому произведение iR положительно. ЭДС самоиндукции по правилу Ленца отрицательна. Так как потенциал отрицательно заряженной пластины меньше, чем потенциал положительной, разность потенциалов (j 1 - j 2) отрицательна: , где q - заряд на конденсаторе. Изменение заряда конденсатора вызывается током, поэтому . С учетом вышеизложенного на основании закона Ома можно записать:

, или

, (9.8)

где b = R/2L - коэффициент затухания, - собственная частота.

Дифференциальное уравнение (9.8) подобно уравнению, полученному для механического пружинного маятника (см. раздел "Механика"). Решение данного уравнения имеет вид: , (9.9)

где q 0 - амплитуда тока в начальный момент времени,

Частота затухающих колебаний. Из (9.9) следует, что уменьшение амплитуды со временем происходит по экспоненциальному закону (рис. 9.10). Частота затухающих колебаний меньше частоты собственных колебаний w 0 . Из (9.10) следует, что при большом затухании (b ³ w 0 ) частота становится мнимой величиной. Это означает, что колебательного процесса не происходит и заряд конденсатора уменьшается до нуля без перезарядки. Такой процесс называется апериодическим .

Выразим условие перехода от колебательного процесса к апериодическому через параметры цепи. Имеем: (R/2L) 2 ³ 1/LC или .

Степень затухания колебаний принято характеризовать логариф-мичес-ким декрементом затуханияl . Он равен логарифму натуральному двух амплитуд через период Т :

или (9.11)

Еще одной характеристикой контура является добротность. Она связана с логарифмическим декрементом затухания соотношением . Нетрудно показать, что при малом затухании, когда b << w 0 и w" » w 0 , добротность выражается через параметры колебательного контура следующим образом: , (9.12)

то есть равна отношению характеристического сопротивления контура к активному сопротивлению потерь.